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Abstra
t. In this paper we study metastability in large volumes at low temperatures.We 
onsider both Ising spins subje
t to Glauber spin-�ip dynami
s and latti
e gas parti-
les subje
t to Kawasaki hopping dynami
s. Let β denote the inverse temperature and let
Λβ ⊂ Z

2 be a square box with periodi
 boundary 
onditions su
h that limβ→∞ |Λβ | = ∞.We run the dynami
s on Λβ starting from a random initial 
on�guration where all thedroplets (= 
lusters of plus-spins, respe
tively, 
lusters of parti
les) are small. For large
β, and for intera
tion parameters that 
orrespond to the metastable regime, we inves-tigate how the transition from the metastable state (with only small droplets) to thestable state (with one or more large droplets) takes pla
e under the dynami
s. Thistransition is triggered by the appearan
e of a single 
riti
al droplet somewhere in Λβ .Using potential-theoreti
 methods, we 
ompute the average nu
leation time (= the �rsttime a 
riti
al droplet appears and starts growing) up to a multipli
ative fa
tor that tendsto one as β → ∞. It turns out that this time grows as KeΓβ/|Λβ | for Glauber dynami
sand KβeΓβ/|Λβ | for Kawasaki dynami
s, where Γ is the lo
al 
anoni
al, respe
tively,grand-
anoni
al energy to 
reate a 
riti
al droplet and K is a 
onstant re�e
ting the ge-ometry of the 
riti
al droplet, provided these times tend to in�nity (whi
h puts a growthrestri
tion on |Λβ |). The fa
t that the average nu
leation time is inversely proportionalto |Λβ | is referred to as homogeneous nu
leation, be
ause it says that the 
riti
al dropletfor the transition appears essentially independently in small boxes that partition Λβ .1. Introdu
tion and main results1.1. Ba
kground. In a re
ent series of papers, Gaudillière, den Hollander, Nardi, Olivieri,and S
oppola [12, 13, 14℄ study a system of latti
e gas parti
les subje
t to Kawasakihopping dynami
s in a large box at low temperature and low density. Using the so-
alled path-wise approa
h to metastability (see Olivieri and Vares [23℄), they show that thetransition time between the metastable state (= the gas phase with only small droplets)and the stable state (= the liquid phase with one or more large droplets) is inverselyproportional to the volume of the large box, provided the latter does not grow too fast withthe inverse temperature. This type of behavior is 
alled homogeneous nu
leation, be
auseit 
orresponds to the situation where the 
riti
al droplet triggering the nu
leation appearsessentially independently in small boxes that partition the large box. The nu
leationtime (= the �rst time a 
riti
al droplet appears and starts growing) is 
omputed up to amultipli
ative error that is small on the s
ale of the exponential of the inverse temperature.The te
hniques developed in [12, 13, 14℄ 
enter around the idea of approximating the lowtemperature and low density Kawasaki latti
e gas by an ideal gas without intera
tionand showing that this ideal gas stays 
lose to equilibrium while ex
hanging parti
les withdroplets that are growing and shrinking. In this way, the large system is shown to behaveessentially like the union of many small independent systems, leading to homogeneousnu
leation. The proofs are long and 
ompli
ated, but they provide 
onsiderable detailabout the typi
al traje
tory of the system prior to and shortly after the onset of nu
leation.In the present paper we 
onsider the same problem, both for Ising spins subje
t to Glauberspin-�ip dynami
s and for latti
e gas parti
les subje
t to Kawasaki hopping dynami
s.Using the potential-theoreti
 approa
h to metastability (see Bovier [5℄), we improve partof the results in [12, 13, 14℄, namely, we 
ompute the average nu
leation time up to amultipli
ative error that tends to one as the temperature tends to zero, thereby providinga very sharp estimate of the time at whi
h the gas starts to 
ondensate.We have no results about the typi
al time it takes for the system to grow a large dropletafter the onset of nu
leation. This is a hard problem that will be addressed in future work.All that we 
an prove is that the dynami
s has a negligible probability to shrink downa super
riti
al droplet on
e it has managed to 
reate one. At least this shows that theappearan
e of a single 
riti
al droplet indeed represents the threshold for nu
leation, as wasshown in [12, 13, 14℄. A further restri
tion is that we need to draw the initial 
on�gurationa

ording to a 
lass of initial distributions on the set of sub
riti
al 
on�gurations, 
alled the1



last-exit biased distributions, sin
e these are parti
ularly suitable for the use of potentialtheory. It remains a 
hallenge to investigate to what extent this restri
tion 
an be relaxed.This problem is addressed with some su

ess in [12, 13, 14℄, and will also be ta
kled infuture work.Our results are an extension to large volumes of the results for small volumes obtained inBovier and Manzo [8℄, respe
tively, Bovier, den Hollander, and Nardi [7℄. In large volumes,even at low temperatures entropy is 
ompeting with energy, be
ause the metastable stateand the states that evolve from it under the dynami
s have a highly non-trivial stru
-ture. Our main goal in the present paper is to extend the potential-theoreti
 approa
hto metastability in order to be able to deal with large volumes. This is part of a broaderprogramme where the obje
tive is to adapt the potential-theoreti
 approa
h to situationswhere entropy 
annot be negle
ted. In the same dire
tion, Bian
hi, Bovier, and Io�e [3℄study the dynami
s of the random �eld Curie-Weiss model on a �nite box at a �xed positivetemperature.As we will see, the basi
 di�
ulty in estimating the nu
leation time is to obtain sharpupper and lower bounds on 
apa
ities. Upper bounds follow from the Diri
hlet variationalprin
iple, whi
h represents a 
apa
ity as an in�mum over a 
lass of test fun
tions. In[3℄ a new te
hnique is developed, based on a variational prin
iple due to Berman andKonsowa [2℄, whi
h represent a 
apa
ity as a supremum over a 
lass of unit �ows. Thiste
hnique allows for getting lower bounds and it will be exploited here too.1.2. Ising spins subje
t to Glauber dynami
s. We will study models in �nite boxes,
Λβ, in the limit as both the inverse temperature, β, and the volume of the box, |Λβ |,tend to in�nity. Spe
i�
ally, we let Λβ ⊂ Z

2 be a square box with odd side length,
entered at the origin with periodi
 boundary 
onditions. A spin 
on�guration is denotedby σ = {σ(x) : x ∈ Λβ}, with σ(x) representing the spin at site x, and is an element of
Xβ = {−1,+1}Λβ . It will frequently be 
onvenient to identify a 
on�guration σ with itssupport, de�ned as supp[σ] = {x ∈ Λβ : σ(x) = +1}.The intera
tion is de�ned by the the usual Ising Hamiltonian

Hβ(σ) = −J

2

∑

(x,y)∈Λβ
x∼y

σ(x)σ(y) − h

2

∑

x∈Λβ

σ(x), σ ∈ Xβ, (1.1)where J > 0 is the pair potential, h > 0 is the magneti
 �eld, and x ∼ y means that x and
y are nearest neighbors. The Gibbs measure asso
iated with Hβ is

µβ(σ) =
1

Zβ
e−βHβ(σ), σ ∈ Xβ, (1.2)where Zβ is the normalizing partition fun
tion.The dynami
s of the model will the a 
ontinuous-time Markov 
hain, (σ(t))t≥0, with statespa
e Xβ whose transition rates are given by

cβ(σ, σ′) =

{

e−β[Hβ(σ′)−Hβ(σ)]+ , for σ′ = σx for some x ∈ Λβ ,
0, otherwise, (1.3)where σx is the 
on�guration obtained from σ by �ipping the spin at site x. We refer tothis Markov pro
ess as Glauber dynami
s. It is ergodi
 and reversible with respe
t to itsunique invariant measure, µβ, i.e.,

µβ(σ)cβ(σ, σ′) = µβ(σ′)cβ(σ′, σ), ∀σ, σ′ ∈ Xβ. (1.4)Glauber dynami
s exhibits metastable behavior in the regime
0 < h < 2J, β → ∞. (1.5)2



ℓc

ℓc − 1

Λ
⋆Figure 1. A 
riti
al droplet for Glauber dynami
s on Λ. The shaded arearepresents the (+1)-spins, the non-shaded area the (−1)-spins (see (1.6)).To understand this, let us brie�y re
all what happens in a �nite β-independent box Λ ⊂

Z
2. Let ⊟Λ and ⊞Λ denote the 
on�gurations where all spins in Λ are −1, respe
tively,

+1. As was shown by Neves and S
honmann [22℄, for Glauber dynami
s restri
ted to
Λ with periodi
 boundary 
onditions and subje
t to (1.5), the 
riti
al droplets for the
rossover from ⊟Λ to ⊞Λ are the set of all those 
on�gurations where the (+1)-spins forman ℓc × (ℓc − 1) quasi-square (in either of both orientations) with a protuberan
e atta
hedto one of its longest sides, where

ℓc =

⌈

2J

h

⌉ (1.6)(see Figs. 1 and 2; for non-degenera
y reasons it is assumed that 2J/h /∈ N). The quasi-squares without the protuberan
e are 
alled proto-
riti
al droplets.Let us now return to our setting with �nite β-dependent volumes Λβ ⊂ Z
2. We willstart our dynami
s on Λβ from initial 
on�gurations in whi
h all droplets are �su�
ientlysmall�. To make this notion pre
ise, let CB(σ), σ ∈ Xβ, be the 
on�guration that isobtained from σ by a �bootstrap per
olation map�, i.e., by 
ir
ums
ribing all the dropletsin σ with re
tangles, and 
ontinuing to doing so in an iterative manner until a union ofdisjoint re
tangles is obtained (see Kote
ký and Olivieri [19℄). We 
all CB(σ) sub
riti
al ifall its re
tangles �t inside a proto-
riti
al droplet and are at distan
e ≥ 2 from ea
h other(i.e., are non-intera
ting).De�nition 1.1. (a) S = {σ ∈ Xβ : CB(σ) is sub
riti
al }.(b) P = {σ ∈ S : cβ(σ, σ′) > 0 for some σ′ ∈ Sc}.(
) C = {σ′ ∈ Sc : cβ(σ, σ′) > 0 for some σ ∈ S}.We refer to S, P and C as the set of sub
riti
al, proto-
riti
al, respe
tively, 
riti
al 
on�gu-rations. Note that, for ever σ ∈ Xβ, ea
h step in the bootstrap per
olation map σ → CB(σ)de
eases the energy, and therefore the Glauber dynami
s moves from σ to CB(σ) in a timeof order one. This is why CB(σ) rather than σ appears in the de�nition of S.For ℓ1, ℓ2 ∈ N, let Rℓ1,ℓ2(x) ⊂ Λβ be the ℓ1 × ℓ2 re
tangle whose lower-left 
orner is x. Wealways take ℓ1 ≤ ℓ2 and allow for both orientations of the re
tangle. For L = 1, . . . , 2ℓc−3,let QL(x) denote the L-th element in the 
anoni
al sequen
e of growing squares and quasi-squares

R1,2(x), R2,2(x), R2,3(x), R3,3(x), . . . , Rℓc−1,ℓc−1(x), Rℓc−1,ℓc
(x). (1.7)In what follows we will 
hoose to start the dynami
s in a way that is suitable for the useof potential theory, as follows. First, we take the initial law to be 
on
entrated on sets

SL ⊂ S de�ned by
SL = {σ ∈ S : ea
h re
tangle in CB(σ) �ts inside QL(x) for some x ∈ Λβ} , (1.8)3



where L is any integer satisfying
L∗ ≤ L ≤ 2ℓc − 3 with L∗ = min

{

1 ≤ L ≤ 2ℓc − 3: lim
β→∞

µβ(SL)

µβ(S)
= 1

}

. (1.9)In words, SL is the subset of those sub
riti
al 
on�gurations whose droplets �t inside asquare or quasi-square labeled L, with L 
hosen large enough so that SL is typi
al within
S under the Gibbs measure µβ as β → ∞ (our results will not depend on the 
hoi
e of
L subje
t to these restri
tions). Se
ond, we take the initial law to be biased a

ording tothe last exit of SL for the transition from SL to a target set in Sc. (Di�erent 
hoi
es willbe made for the target set, and the pre
ise de�nition of the biased law will be given inSe
tion 2.2.) This is a highly spe
i�
 
hoi
e, but 
learly one of physi
al interest.Remarks: (1) Note that S2ℓc−3 = S, whi
h implies that the range of L-values in (1.9)is non-empty. The value of L∗ depends on how fast Λβ grows with β. In Appendix C.1we will show that, for every 1 ≤ L ≤ 2ℓc − 4, limβ→∞ µβ(SL)/µβ(S) = 1 if and only if
limβ→∞ |Λβ |e−βΓL+1 = 0 with ΓL+1 the energy needed to 
reate a droplet QL+1(0) at theorigin. Thus, if |Λβ | = eθβ, then L∗ = L∗(θ) = (2ℓc − 3) ∧ min{L ∈ N : ΓL+1 > θ}, whi
hin
reases stepwise from 1 to 2ℓc − 3 as θ in
reases from 0 to Γ de�ned in (1.10).(2) If we draw the initial 
on�guration σ0 from some subset of S that has a strong re
urren
eproperty under the dynami
s, then the 
hoi
e of initial distribution on this subset shouldnot matter. This issue will be addressed in future work.

Γ

Figure 2. A nu
leation path from ⊟Λ to ⊞Λ for Glauber dynami
s. Γ in (1.10)is the minimal energy barrier the path has to over
ome under the lo
al variant ofthe Hamiltonian in (1.1).To state our main theorem for Glauber dynami
s, we need some further notation. The keyquantity for the nu
leation pro
ess is
Γ = J [4ℓc] − h[ℓc(ℓc − 1) + 1], (1.10)whi
h is the energy needed to 
reate a 
riti
al droplet of (+1)-spins at a given lo
ation ina sea of (−1)-spins (see Figs. 1 and 2). For σ ∈ Xβ, let Pσ denote the law of the dynami
sstarting from σ and, for ν a probability distribution on X , put

Pν(·) =
∑

σ∈Xβ

Pσ(·) ν(σ). (1.11)For a non-empty set A ⊂ Xβ, let
τA = inf{t > 0: σt ∈ A, σt− /∈ A} (1.12)denote the �rst time the dynami
s enters A. For non-empty and disjoint sets A,B ⊂ Xβ,let νB

A denote the last-exit biased distribution on A for the 
rossover to B de�ned in (2.9)in Se
tion 2.2. Put
N1 = 4ℓc, N2 = 4

3(2ℓc − 1). (1.13)4



For M ∈ N with M ≥ ℓc, de�ne
DM =

{

σ ∈ Xβ : ∃x ∈ Λβ su
h that supp[CB(σ)] ⊃ RM,M (x)
}

, (1.14)i.e., the set of 
on�gurations 
ontaining a super
riti
al droplet of size M . For our resultsbelow to be valid we need to assume that
lim

β→∞
|Λβ | = ∞, lim

β→∞
|Λβ| e−βΓ = 0. (1.15)Theorem 1.2. In the regime (1.5), subje
t to (1.9) and (1.15), the following hold:(a)

lim
β→∞

|Λβ | e−βΓ
EνSc

SL

(τSc) =
1

N1
. (1.16)(b)

lim
β→∞

|Λβ | e−βΓ
E

ν
Sc\C
SL

(

τSc\C

)

=
1

N2
. (1.17)(
)

lim
β→∞

|Λβ | e−βΓ
E

ν
DM
SL

(τDM
) =

1

N2
, ∀ ℓc ≤ M ≤ 2ℓc − 1. (1.18)The proof of Theorem 1.2 will be given in Se
tion 3. Part (a) says that the averagetime to 
reate a 
riti
al droplet is [1 + o(1)]eβΓ/N1|Λβ |. Parts (b) and (
) say that theaverage time to go beyond this 
riti
al droplet and to grow a droplet that is twi
e aslarge is [1 + o(1)]eβΓ/N2|Λβ|. The fa
tor N1 
ounts the number of shapes of the 
riti
aldroplet, while |Λβ| 
ounts the number of lo
ations. The average times to 
reate a 
riti
al,respe
tively, a super
riti
al droplet di�er by a fa
tor N2/N1 < 1. This is be
ause on
ethe dynami
s is �on top of the hill� C it has a positive probability to �fall ba
k� to S. Onaverage the dynami
s makes N1/N2 > 1 attempts to rea
h the top C before it �nally �fallsover� to Sc\C. After that, it rapidly grows a large droplet (see Fig. 2).Remarks: (1) The se
ond 
ondition in (1.15) will not a
tually be used in the proof ofTheorem 1.2(a). If this 
ondition fails, then there is a positive probability to see a proto-
riti
al droplet in Λβ under the starting measure νSc

SL
, and nu
leation sets in immediately.Theorem 1.2(a) 
ontinues to be true, but it no longer des
ribes metastable behavior.(2) In Appendix D we will show that the average probability under the Gibbs measure

µβ of destroying a super
riti
al droplet and returning to a 
on�guration in SL is exponen-tially small in β. Hen
e, the 
rossover from SL to Sc\C represents the true threshold fornu
leation, and Theorem 1.2(b) represents the true nu
leation time.(3) We expe
t Theorem 1.2(
) to hold for values of M that grow with β as M = eo(β). Aswe will see in Se
tion 3.3, the ne
essary 
apa
ity estimates 
arry over, but the ne
essaryequilibrium potential estimates are not yet available. This problem will be addressed infuture work.(4) Theorem 1.2 should be 
ompared with the results in Bovier and Manzo [8℄ for the 
aseof a �nite β-independent box Λ (large enough to a

ommodate a 
riti
al droplet). In that
ase, if the dynami
s starts from ⊟Λ, then the average time it needs to hit CΛ (= the setof 
on�gurations in Λ with a 
riti
al droplet), respe
tively, ⊞Λ equals
KeβΓ[1 + o(1)], with K = K(Λ, ℓc) =

1

N

1

|Λ| for N = N1,N2. (1.19)(4) Note that in Theorem 1.2 we 
ompute the �rst time when a 
riti
al droplet appearsanywhere (!) in the box Λβ . It is a di�erent issue to 
ompute the �rst time when the plus-phase appears near the origin. This time, whi
h depends on how a super
riti
al dropletgrows and eventually invades the origin, was studied by Dehghanpour and S
honmann [10,11℄, Shlosman and S
honmann [24℄ and, more re
ently, by Cerf and Manzo [9℄.5



1.3. Latti
e gas subje
t to Kawasaki dynami
s. We next 
onsider the latti
e gassubje
t to Kawasaki dynami
s and state a similar result for homogeneous nu
leation. Someaspe
ts are similar as for Glauber dynami
s, but there are notable di�eren
es.A latti
e gas 
on�guration is denoted by σ = {σ(x) : x ∈ Xβ}, with σ(x) representing thenumber of parti
les at site x, and is an element of Xβ = {0, 1}Λβ . The Hamiltonian isgiven by
Hβ(σ) = −U

∑

(x,y)∈Λβ
x∼y

σ(x)σ(y), σ ∈ Xβ, (1.20)where −U < 0 is the binding energy and x ∼ y means that x and y are neighboring sites.Thus, we are working in the 
anoni
al ensemble, i.e., there is no term analogous to these
ond term in (1.1). The number of parti
les in Λβ is
nβ = ⌈ ρβ |Λβ| ⌉, (1.21)where ρβ is the parti
le density, whi
h is 
hosen to be

ρβ = e−β∆, ∆ > 0. (1.22)Put
X (nβ)

β = {σ ∈ Xβ : |supp[σ]| = nβ}, (1.23)where supp[σ] = {x ∈ Λβ : σ(x) = 1}.Remark: If we were to work in the grand-
anoni
al ensemble, then we would have to
onsider the Hamiltonian
Hgc(σ) = −U

∑

(x,y)∈Λβ
x∼y

σ(x)σ(y) + ∆
∑

x∈Λβ

σ(x), σ ∈ Xβ, (1.24)with ∆ > 0 an a
tivity parameter taking over the role of h in (1.1). The se
ond term wouldmimi
 the presen
e of an in�nite gas reservoir with density ρβ outside Λβ. Su
h a Hamilton-ian was used in earlier work on Kawasaki dynami
s, when a �nite β-independent box withopen boundaries was 
onsidered (see e.g. den Hollander, Olivieri, and S
oppola [18℄, denHollander, Nardi, Olivieri, and S
oppola [17℄, and Bovier, den Hollander, and Nardi [7℄).The dynami
s of the model will be the 
ontinuous-time Markov 
hain, (σt)t≥0, with statespa
e X (nβ)
β whose transition rates are

cβ(σ, σ′) =

{

e−β[Hβ(σ′)−Hβ(σ)]+ , for σ′ = σx,y for some x, y ∈ Λβ with x ∼ y,
0, otherwise, (1.25)where σx,y is the 
on�guration obtained from σ by inter
hanging the values at sites x and

y. We refer to this Markov pro
ess as Kawasaki dynami
s. It is ergodi
 and reversible withrespe
t to the 
anoni
al Gibbs measure
µβ(σ) =

1

Z
(nβ)
β

e−βHβ(σ), σ ∈ X (nβ)
β , (1.26)where Z

(nβ)
β is the normalizing partition fun
tion. Note that the dynami
s preserves par-ti
les, i.e., it is 
onservative.Kawasaki dynami
s exhibits metastable behavior in the regime

U < ∆ < 2U, β → ∞. (1.27)This is again inferred from the behavior of the model in a �nite β-independent box Λ ⊂ Z
2.Let �Λ and �Λ denote the 
on�gurations where all the sites in Λ are va
ant, respe
tively,o

upied. For Kawasaki dynami
s on Λ with an open boundary, where parti
les are anni-hilated at rate 1 and 
reated at rate e−∆β, it was shown in den Hollander, Olivieri, andS
oppola [18℄ and in Bovier, den Hollander, and Nardi [7℄ that, subje
t to (1.27) and for6



ℓc

ℓc−1

1
0

ΛFigure 3. A 
riti
al droplet for Kawasaki dynami
s on Λ (= a proto-
riti
aldroplet plus a free parti
le). The shaded area represents the parti
les, the non-shaded area the va
an
ies (see (1.28)). Note that the shape of the proto-
riti
aldroplet for Kawasaki dynami
s is the same as that of the 
riti
al droplet forGlauber dynami
s. The proto-
riti
al droplet for Kawasaki dynami
s be
omes
riti
al when a free parti
le is added.the Hamiltonian in (1.24), the 
riti
al droplets for the 
rossover from �Λ to �Λ are the setof all those 
on�gurations where the parti
les form(1) either an (ℓc − 2) × (ℓc − 2) square with four bars atta
hed to the four sides withtotal length 3ℓc − 3,(2) or an (ℓc − 1) × (ℓc − 3) re
tangle with four bars atta
hed to the four sides withtotal length 3ℓc − 2,plus a free parti
le anywhere in the box, where
ℓc =

⌈

U

2U − ∆

⌉ (1.28)(see Figs. 3 and 4; for non-degenera
y reasons it is assumed that U/(2U − ∆) /∈ N).Let us now return to our setting with �nite β-dependent volumes. We de�ne a referen
edistan
e, Lβ, as
L2

β = e(∆−δβ)β =
1

ρβ
e−δββ (1.29)with

lim
β→∞

δβ = 0, lim
β→∞

βδβ = ∞, (1.30)i.e., Lβ is marginally below the typi
al interparti
le distan
e. We assume Lβ to be odd,and write BLβ ,Lβ
(x), x ∈ Λβ, for the square box with side length Lβ whose 
enter is x.De�nition 1.3. (a) S = {σ ∈ X (nβ)

β : |supp[σ] ∩ BLβ ,Lβ
(x)| ≤ ℓc(ℓc − 1) + 1 ∀x ∈ Λβ}.(b) P = {σ ∈ S : cβ(σ, σ′) > 0 for some σ′ ∈ Sc}.(
) C = {σ′ ∈ Sc : cβ(σ, σ′) > 0 for some σ ∈ S}.(d) C− = {σ ∈ C : ∃x ∈ Λβ su
h that BLβ ,Lβ

(x) 
ontains a proto-
riti
al droplet plus afree parti
le at distan
e Lβ}.(e) C+ = the set of 
on�gurations obtained from C− by moving the free parti
le to a site atdistan
e 2 from the proto-
riti
al droplet.As before, we refer to S, P and C as the set of sub
riti
al, proto-
riti
al, respe
tively,
riti
al 
on�gurations. Note that, for every σ ∈ S, the number of parti
les in a box of size
Lβ does not ex
eed the number of parti
les in a proto-
riti
al droplet. These parti
les donot have to form a 
luster or to be near to ea
h other, be
ause the Kawasaki dynami
sbrings them together in a time of order L2

β = o(1/ρβ).7



The initial law will again be 
on
entrated on sets SL ⊂ S, this time de�ned by
SL =

{

σ ∈ X (nβ)
β : |supp[σ] ∩ BLβ ,Lβ

(x)| ≤ L ∀x ∈ Λβ

}

, (1.31)and L any integer satisfying
L∗ ≤ L ≤ ℓc(ℓc − 1) + 1 with L∗ = min

{

1 ≤ L ≤ ℓc(ℓc − 1) + 1: lim
β→∞

µβ(SL)

µβ(S)
= 1

}

.(1.32)In words, SL is the subset of those sub
riti
al 
on�gurations for whi
h no box of size Lβ
arries more than L parti
les, with L again 
hosen su
h that SL is typi
al within S underthe Gibbs measure µβ as β → ∞.Remark: Note that Sℓc(ℓc−1)+1 = S. As for Glauber, the value of L∗ depends on howfast Λβ grows with β. In Appendix C.2 we will show that, for every 1 ≤ L ≤ ℓc(ℓc − 1),
limβ→∞ µβ(SL)/µβ(S) = 1 if and only if limβ→∞ |Λβ|e−β(ΓL+1−∆) = 0 with ΓL+1 theenergy needed to 
reate a droplet of L + 1 parti
les, 
losest in shape to a square or quasi-square, in BLβ ,Lβ

(0) under the grand-
anoni
al Hamiltonian on this box. Thus, if |Λβ| =

eθβ, then L∗ = L∗(θ) = [ℓc(ℓc − 1) + 1] ∧ min{L ∈ N : ΓL+1 − ∆ > θ}, whi
h in
reasesstepwise from 1 to ℓc(ℓc − 1) + 1 as θ in
reases from ∆ to Γ de�ned in (1.33).
Γ

∆

U

2U

Λ

ΛFigure 4. A nu
leation path from �Λ to �Λ for Kawasaki dynami
s on Λ withopen boundary. Γ in (1.33) is the minimal energy barrier the path has to over
omeunder the lo
al variant of the grand-
anoni
al Hamiltonian in (1.24).Set
Γ = −U [(ℓc − 1)2 + ℓc(ℓc − 1) + 1] + ∆[ℓc(ℓc − 1) + 2], (1.33)whi
h is the energy of a 
riti
al droplet at a given lo
ation with respe
t to the grand-
anoni
al Hamiltonian given by (1.24) (see Figs. 3 and 4). Put N = 1

3ℓ2
c(ℓ

2
c − 1). For

M ∈ N with M ≥ ℓc, de�ne
DM =

{

σ ∈ Xβ : ∃x ∈ Λβ su
h that supp[(σ)] ⊃ RM,M (x)
}

, (1.34)i.e., the set of 
on�gurations 
ontaining a super
riti
al droplet of size M . For our resultsbelow to be valid we need to assume that
lim

β→∞
|Λβ | ρβ = ∞, lim

β→∞
|Λβ | e−βΓ = 0. (1.35)This �rst 
ondition says that the number of parti
les tends to in�nity, and ensures thatthe formation of a 
riti
al droplet somewhere does not globally deplete the surroundinggas. 8



Theorem 1.4. In the regime (1.27), subje
t to (1.32) and (1.35), the following hold:(a)
lim

β→∞
|Λβ|

4π

β∆
e−βΓ

E
ν
(Sc\C̃)∪C+

SL

(

τ(Sc\C̃)∪C+

)

=
1

N
. (1.36)(b)

lim
β→∞

|Λβ |
4π

β∆
e−βΓ

E
ν
DM
SL

(τDM
) =

1

N
, ∀ ℓc ≤ M ≤ 2ℓc − 1. (1.37)The proof of Theorem 1.4, whi
h is the analog of Theorem 1.2, will be given in Se
tion 4.Part (a) says that the average time to 
reate a 
riti
al droplet is [1+o(1)](β∆/4π)eβΓN |Λβ |.The fa
tor β∆/4π 
omes from the simple random walk that is performed by the free parti
le�from the gas to the proto-
riti
al droplet� (i.e., the dynami
s goes from C− to C+), whi
hslows down the nu
leation. The fa
tor N 
ounts the number of shapes of the proto-
riti
aldroplet (see Bovier, den Hollander, and Nardi [7℄). Part (b) says that, on
e the 
riti
aldroplet is 
reated, it rapidly grows to a droplet that has twi
e the size.Remarks: (1) As for Theorem 1.2(
), we expe
t Theorem 1.4(b) to hold for values of Mthat grow with β as M = eo(β). See Se
tion 4.2 for more details.(2) In Appendix D we will show that the average probability under the Gibbs measure µβof destroying a super
riti
al droplet and returning to a 
on�guration in SL is exponentiallysmall in β. Hen
e, the 
rossover from SL to Sc\C̃ ∪ C+ represents the true threshold fornu
leation, and Theorem 1.4(a) represents the true nu
leation time.(3) It was shown in Bovier, den Hollander, and Nardi [7℄ that the average 
rossover timein a �nite box Λ equals

KeβΓ[1 + o(1)], with K = K(Λ, ℓc) ∼
log |Λ|

4π

1

N |Λ| , Λ → Z
2. (1.38)This mat
hes the |Λβ |-dependen
e in Theorem 1.4, with the logarithmi
 fa
tor in (1.38)a

ounting for the extra fa
tor β∆ in Theorem 1.4 
ompared to Theorem 1.2. Note thatthis fa
tor is parti
ularly interesting, sin
e it says that the e�e
tive box size responsible forthe formation of a 
riti
al droplet is Lβ.1.4. Outline. The remainder of this paper is organized as follows. In Se
tion 2 we presenta brief sket
h of the basi
 ingredients of the potential-theoreti
 approa
h to metastability.In parti
ular, we exhibit a relation between average 
rossover times and 
apa
ities, andwe state two variational representations for 
apa
ities, the �rst of whi
h is suitable forderiving upper bounds and the se
ond for deriving lower bounds. Se
tion 3 
ontains theproof of our results for the 
ase of Glauber dynami
s. This will be te
hni
ally relativelyeasy, and will give a �rst �avor of how our method works. In Se
tion 4 we deal withKawasaki dynami
s. Here we will en
ounter several rather more di�
ult issues, all 
omingfrom the fa
t that Kawasaki dynami
s is 
onservative. The �rst is to understand whythe 
onstant Γ, representing the lo
al energeti
 
ost to 
reate a 
riti
al droplet, involvesthe grand-
anoni
al Hamiltonian, even though we are working in the 
anoni
al ensemble.This mystery will, of 
ourse, be resolved by the observation that the formation of a 
riti
aldroplet redu
es the entropy of the system: the pre
ise 
omputation of this entropy lossyields Γ via equivalen
e of ensembles. The se
ond problem is to 
ontrol the probability of aparti
le moving from the gas to the proto-
riti
al droplet at the last stage of the nu
leation.This non-lo
ality issue will be dealt with via upper and lower estimates. Appendi
es A�D
olle
t some te
hni
al lemmas that are needed in Se
tions 3�4.The extension of our results to higher dimensions is limited only by the 
ombinatorialproblems involved in the 
omputation of the number of 
riti
al droplets (whi
h is hardin the 
ase of Kawasaki dynami
s) and of the probability for simple random walk tohit a 
riti
al droplet of a given shape when 
oming from far. We will not pursue this9



generalization here. The relevant results on a β-independent box in Z
3 
an be found inBen Arous and Cerf [1℄ (Glauber) and den Hollander, Nardi, Olivieri, and S
oppola [17℄(Kawasaki). For re
ent overviews on droplet growth in metastability, we refer the readerto den Hollander [15, 16℄ and Bovier [4, 5℄. A general overview on metastability is givenin the monograph by Olivieri and Vares [23℄.2. Basi
 ingredients of the potential-theoreti
 approa
hThe proof of Theorems 1.2 and 1.4 uses the potential-theoreti
 approa
h to metastabilitydeveloped in Bovier, E
kho�, Gayrard and Klein [6℄. This approa
h is based on the fol-lowing three observations. First, most quantities of physi
al interest 
an be representedin term of Diri
hlet problems asso
iated with the generator of the dynami
s. Se
ond, theGreen fun
tion of the dynami
s 
an be expressed in terms of 
apa
ities and equilibrium po-tentials. Third, 
apa
ities satisfy variational prin
iples that allow for obtaining upper andlower bounds in a �exible way. We will see that in the 
urrent setting the implementationof these observations provides very sharp results.2.1. Equilibrium potential and 
apa
ity. The fundamental quantity in the theory isthe equilibrium potential, hA,B, asso
iated with two non-empty disjoint sets of 
on�gura-tions, A,B ⊂ X (= Xβ or X (nβ)

β ), whi
h probabilisti
ally is given by
hA,B(σ) =







Pσ(τA < τB), for σ ∈ (A ∪ B)c,
1, for σ ∈ A,
0, for σ ∈ B,

(2.1)where
τA = inf{t > 0: σt ∈ A, σt− /∈ A}, (2.2)

(σt)t≥0 is the 
ontinuous-time Markov 
hain with state spa
e X , and Pσ is its law startingfrom σ. This fun
tion is harmoni
 and is the unique solution of the Diri
hlet problem
(LhA,B)(σ) = 0, σ ∈ (A ∪ B)c,
hA,B(σ) = 1, σ ∈ A,
hA,B(σ) = 0, σ ∈ B,

(2.3)where the generator is the matrix with entries
L(σ, σ′) = cβ(σ, σ′) − δσ,σ′ cβ(σ), σ, σ′ ∈ X , (2.4)with cβ(σ) the total rate at whi
h the dynami
s leaves σ,

cβ(σ) =
∑

σ′∈X\{σ}

cβ(σ, σ′), σ ∈ X . (2.5)A related quantity is the equilibrium measure on A, whi
h is de�ned as
eA,B(σ) = −(LhA,B)(σ), σ ∈ A. (2.6)The equilibrium measure also has a probabilisti
 meaning, namely,
Pσ(τB < τA) =

eA,B(σ)

cβ(σ)
, σ ∈ A. (2.7)The key obje
t we will work with is the 
apa
ity, whi
h is de�ned asCAP(A,B) =

∑

σ∈A

µβ(σ)eA,B(σ). (2.8)10



2.2. Relation between 
rossover time and 
apa
ity. The �rst important ingredientof the potential-theoreti
 approa
h to metastability is a formula for the average 
rossovertime from A to B. To state this formula, we de�ne the probability measure νB
A on A wealready referred to in Se
tion 1, namely,

νB
A(σ) =

{

µβ(σ)eA,B(σ)CAP(A,B)
, for σ ∈ A,

0, for σ ∈ Ac.
(2.9)The following proposition is proved e.g. in Bovier [5℄.Proposition 2.1. For any two non-empty disjoint sets A,B ⊂ X ,

∑

σ∈A

νB
A(σ) Eσ(τB) =

1CAP(A,B)

∑

σ∈Bc

µβ(σ)hA,B(σ). (2.10)Remarks: (1) Due to (2.7�2.8), the probability measure νB
A(σ) 
an be written as

νB
A(σ) =

µβ(σ) cβ(σ)CAP(A,B)
Pσ(τB < τA), σ ∈ A, (2.11)and thus has the �avor of a last-exit biased distribution. Proposition 2.1 explains why ourmain results on average 
rossover times stated in Theorem 1.2 and 1.4 are formulated forthis initial distribution. Note that

µβ(A) ≤
∑

σ∈Bc

µβ(σ)hA,B(σ) ≤ µβ(Bc). (2.12)We will see that in our setting µβ(Bc\A) = o(µβ(A)) as β → ∞, so that the sum in theright-hand side of (2.10) is ∼ µβ(A) and the 
omputation of the 
rossover time redu
es tothe estimation of CAP(A,B).(2) For a �xed target set B, the 
hoi
e of the starting set A is free. It is tempting to
hoose A = {σ} for some σ ∈ X . This was done for the 
ase of a �nite β-independentbox Λ. However, in our 
ase (and more generally in 
ases where the state spa
e is large)su
h a 
hoi
e would give intra
table numerators and denominators in the right-hand sideof (2.10). As a rule, to make use of the identity in (2.10), A must be so large that theharmoni
 fun
tion hA,B �does not 
hange abruptly near the boundary of A� for the targetset B under 
onsideration.As noted above, average 
rossover times are essentially governed by 
apa
ities. The use-fulness of this observation 
omes from the 
omputability of 
apa
ities, as will be explainednext.2.3. The Diri
hlet prin
iple: A variational prin
iple for upper bounds. The 
a-pa
ity is a boundary quantity, be
ause eA,B > 0 only on the boundary of A. The analogof Green's identity relates it to a bulk quantity. Indeed, in terms of the Diri
hlet formde�ned by
E(h) = 1

2

∑

σ,σ′∈X

µβ(σ)cβ(σ, σ′)[h(σ) − h(σ′)]2, h : X → [0, 1], (2.13)it follows, via (2.1) and (2.7�2.8), thatCAP(A,B) = E(hA,B). (2.14)Elementary variational 
al
ulus shows that the 
apa
ity satis�es the Diri
hlet prin
iple:Proposition 2.2. For any two non-empty disjoint sets A,B ⊂ X ,CAP(A,B) = min
h : X→[0,1]

h|A≡1,h|B≡0

E(h). (2.15)11



The importan
e of the Diri
hlet prin
iple is that it yields 
omputable upper bounds for
apa
ities by suitable 
hoi
es of the test fun
tion h. In metastable systems, with theproper physi
al insight it is often possible to guess a reasonable test fun
tion. In oursetting this will be seen to be relatively easy.2.4. The Berman-Konsowa prin
iple: A variational prin
iple for lowerbounds. We will des
ribe a little-known variational prin
iple for 
apa
ities that is origi-nally due to Berman and Konsowa [2℄. Our presentation will follow the argument given inBian
hi, Bovier, and Io�e [3℄.In the following it will be 
onvenient to think of X as the vertex-set of a graph (X , E)whose edge-set E 
onsists of all pairs (σ, σ′), σ, σ′ ∈ X , for whi
h cβ(σ, σ′) > 0.De�nition 2.3. Given two non-empty disjoint sets A,B ⊂ X , a loop-free non-negativeunit �ow, f , from A to B is a fun
tion f : E → [0,∞) su
h that:(a) (f(e) > 0 =⇒ f(−e) = 0) ∀ e ∈ E.(b) f satis�es Kir
ho�'s law:
∑

σ′∈X

f(σ, σ′) =
∑

σ′′∈X

f(σ′′, σ), ∀σ ∈ X\(A ∪ B). (2.16)(
) f is normalized:
∑

σ∈A

∑

σ′∈X

f(σ, σ′) = 1 =
∑

σ′′∈X

∑

σ∈B

f(σ′′, σ). (2.17)(d) Any path from A to B along edges e su
h that f(e) > 0 is self-avoiding.The spa
e of all loop-free non-negative unit �ows from A to B is denoted by UA,B.A natural �ow is the harmoni
 �ow, whi
h is 
onstru
ted from the equilibrium potential
hA,B as

fA,B(σ, σ′) =
1CAP(A,B)

µβ(σ)cβ(σ, σ′)
[

hA,B(σ) − hA,B(σ′)
]

+
, σ, σ′ ∈ X . (2.18)It is easy to verify that fA,B satis�es (a�d). Indeed, (a) is obvious, (b) uses the harmoni
ityof hA,B, (
) follows from (2.6) and (2.8), while (d) 
omes from the fa
t that the harmoni
�ow only moves in dire
tions where hA,B de
reases.A loop-free non-negative unit �ow f is naturally asso
iated with a probability measure P

fon self-avoiding paths, γ. To see this, de�ne F (σ) =
∑

σ′∈X f(σ, σ′), σ ∈ X\B. Then P
fis the Markov 
hain (σn)n∈N0 with initial distribution P

f (σ0) = F (σ0)1A(σ0), transitionprobabilities
qf (σ, σ′) =

f(σ, σ′)

F (σ)
, σ ∈ X\B, (2.19)su
h that the 
hain is stopped upon arrival in B. In terms of this probability measure, wehave the following proposition (see [3℄ for a proof).Proposition 2.4. Let A,B ⊂ X be two non-empty disjoint sets. Then, with the notationintrodu
ed above, CAP(A,B) = sup

f∈UA,B

E
f





[

∑

e∈γ

f(el, er)

µβ(el)cβ(el, er)

]−1


 , (2.20)where e = (el, er) and the expe
tation is with respe
t to γ. Moreover, the supremum isrealized for the harmoni
 �ow fA,B. 12



The ni
e feature of this variational prin
iple is that any �ow gives a 
omputable lower bound.In this sense (2.15) and (2.20) 
omplement ea
h other. Moreover, sin
e the harmoni
 �owis optimal, a good approximation of the harmoni
 fun
tion hA,B by a test fun
tion h leadsto a good approximation of the harmoni
 �ow fA,B by a test �ow f after putting h insteadof hA,B in (2.18). Again, in metastable systems, with the proper physi
al insight it is oftenpossible to guess a reasonable �ow. We will see in Se
tions 3�4 how this is put to work inour setting. 3. Proof of Theorem 1.23.1. Proof of Theorem 1.2(a). To estimate the average 
rossover time from SL ⊂ S to
Sc, we will use Proposition 2.1. With A = SL and B = Sc, (2.10) reads

∑

σ∈SL

νSc

SL
(σ) Eσ(τSc) =

1CAP(SL,Sc)

∑

σ∈S

µβ(σ)hSL,Sc(σ). (3.1)The left-hand side is the quantity of interest in (1.16). In Se
tions 3.1.1�3.1.2 we estimate
∑

σ∈S µβ(σ)hSL,Sc(σ) and CAP(SL,Sc). The estimates will show thatr.h.s. (3.1) =
1

N1|Λβ|
eβΓ [1 + o(1)], β → ∞. (3.2)3.1.1. Estimate of ∑σ∈S µβ(σ)hSL,Sc(σ).Lemma 3.1. ∑σ∈S µβ(σ)hSL,Sc(σ) = µβ(S)[1 + o(1)] as β → ∞.Proof. Write, using (2.1),

∑

σ∈S

µβ(σ)hSL,Sc(σ) =
∑

σ∈SL

µβ(σ)hSL,Sc(σ) +
∑

σ∈S\SL

µβ(σ)hSL,Sc(σ)

= µβ(SL) +
∑

σ∈S\SL

µβ(σ)Pσ(τSL
< τSc).

(3.3)The last sum is bounded above by µβ(S\SL). But µβ(S\SL) = o(µβ(S)) as β → ∞ byour 
hoi
e of L in (1.9).3.1.2. Estimate of CAP(SL,Sc).Lemma 3.2. CAP(SL,Sc) = N1 |Λβ|e−βΓµβ(S)[1 + o(1)] as β → ∞ with N1 = 4ℓc.Proof. The proof pro
eeds via upper and lower bounds.Upper bound: We use the Diri
hlet prin
iple and a test fun
tion that is equal to 1 on Sto get the upper boundCAP(SL,Sc) ≤ CAP(S,Sc) =
∑

σ∈S,σ′∈Sc

cβ (σ,σ′)>0

µβ(σ)cβ(σ, σ′) =
∑

σ∈S,σ′∈Sc

cβ(σ,σ′)>0

[µβ(σ) ∧ µβ(σ′)] ≤ µβ(C),(3.4)where the se
ond equality uses (1.4) in 
ombination with the fa
t that cβ(σ, σ′)∨cβ(σ′, σ) =
1 by (1.3). Thus, it su�
es to show that

µβ(C) ≤ N1 |Λβ | e−βΓ [1 + o(1)] as β → ∞. (3.5)For every σ ∈ P there are one or more re
tangles Rℓc−1,ℓc
(x), x = x(σ) ∈ Xβ, that are�lled by (+1)-spins in CB(σ). If σ′ ∈ C is su
h that σ′ = σy for some y ∈ Λβ, then σ′ hasa (+1)-spin at y situated on the boundary of one of these re
tangles. Let

Ŝ(x) =
{

σ ∈ S : supp[σ] ⊆ Rℓc−1,ℓc
(x)
}

,

Š(x) =
{

σ ∈ S : supp[σ] ⊆ [Rℓc+1,ℓc+2(x − (1, 1))]c
}

.
(3.6)13



x

ℓc + 1

ℓc + 2

Figure 5. Rℓc−1,ℓc
(x) (shaded box) and [Rℓc+1,ℓc+2(x − (1, 1))]c (
omplementof dotted box).For every σ ∈ P, we have σ = σ̂∨σ̌ for some σ̂ ∈ Ŝ(x) and σ̌ ∈ Š(x), uniquely de
omposingthe 
on�guration into two non-intera
ting parts inside Rℓc−1,ℓc

(x) and [Rℓc+1,ℓc+2(x −
(1, 1))]c (see Fig. 5). We have

Hβ(σ) − Hβ(⊟) = [Hβ(σ̂) − Hβ(⊟)] + [Hβ(σ̌) − Hβ(⊟)]. (3.7)Moreover, for any y /∈ supp[CB(σ)], we have
Hβ(σy) ≥ Hβ(σ) + 2J − h. (3.8)Hen
e

µβ(C) =
1

Zβ

∑

σ∈P

∑

x∈Λβ
σx∈C

e−βHβ(σx)

≤ 1

Zβ

N1 e−β[2J−h−Hβ(⊟)]
∑

x∈Λβ

∑

σ̌∈Š(x)

e−βHβ(σ̌)
∑

σ̂∈Ŝ(x)
σ̂∨σ̌∈P

e−βHβ(σ̂)

≤ [1 + o(1)]
1

Zβ
N1 |Λβ | e−βΓ

∑

σ̌∈Š(0)

e−βHβ(σ̌)

= [1 + o(1)]N1 |Λβ| e−βΓ µβ(Š(0)),

(3.9)
where the �rst inequality uses (3.7�3.8), with N1 = 2 × 2ℓc = 4ℓc 
ounting the number of
riti
al droplets that 
an arise from a proto-
riti
al droplet via a spin �ip (see Fig. 1), andthe se
ond inequality uses that

σ̂ ∈ Ŝ(0), σ̂ ∨ σ̌ ∈ P =⇒ Hβ(σ̂) ≥ Hβ(Rℓc−1,ℓc
(0)) = Γ − (2J − h) + Hβ(⊟) (3.10)with equality in the right-hand side if and only if supp[σ̂] = Rℓc−1,ℓc

(0). Combining (3.4)and (3.9) with the in
lusion Š(0) ⊂ S, we get the upper bound in (3.5).Lower bound: We exploit Proposition 2.4 by making a judi
ious 
hoi
e for the �ow f . Infa
t, in the Glauber 
ase this 
hoi
e will be simple: with ea
h 
on�guration σ ∈ SL weasso
iate a 
on�guration in C ⊂ Sc with a unique 
riti
al droplet and a �ow that, fromea
h su
h 
on�guration, follows a unique deterministi
 path along whi
h this droplet isbroken down in the 
anoni
al order (see Fig. 6) until the set SL is rea
hed, i.e., a squareor quasi-square droplet with label L is left over (re
all (1.7�1.8)).
σ0 σ1 σ2 σ3 σ4 σ5 σKFigure 6. Canoni
al order to break down a 
riti
al droplet.14



Let f(β) be su
h that
lim

β→∞
f(β) = ∞, lim

β→∞

1

β
log f(β) = 0, lim

β→∞
|Λβ |/f(β) = ∞, (3.11)and de�ne

W =
{

σ ∈ S : |supp[σ]| ≤ |Λβ|/f(β)
}

. (3.12)Let CL ⊂ C ⊂ Sc be the set of 
on�gurations obtained by pi
king any σ ∈ SL ∩ W andadding somewhere in Λβ a 
riti
al droplet at distan
e ≥ 2 from supp[σ]. Note that thedensity restri
tion imposed on W guarantees that adding su
h a droplet is possible almosteverywhere in Λβ for β large enough. Denoting by P(y)(x) the 
riti
al droplet obtainedby adding a protuberan
e at y along the longest side of the re
tangle Rℓc−1,ℓc
(x), we maywrite

CL =
{

σ ∪ P(y)(x) : σ ∈ S ∩W, x, y ∈ Λβ, (x, y)⊥σ
}

, (3.13)where (x, y)⊥σ stands for the restri
tion that the 
riti
al droplet P(y)(x) is not intera
tingwith supp[σ], whi
h implies that Hβ(σ ∪ P(y)(x)) = Hβ(σ) + Γ (see Figs. 7 and 8).
x

yFigure 7. The 
riti
al droplet P(y)(x).
P

(y)(x)

ΛβFigure 8. Going from SL to CL by adding a 
riti
al droplet P(y)(x) somewhere in Λβ .Now, for ea
h σ ∈ CL, we let γσ = (γσ(0), γσ(1), . . . , γσ(K)) be the 
anoni
al path from
σ = γσ(0) to SL along whi
h the 
riti
al droplet is broken down, where K = v(2ℓc−3)−v(L)with

v(L) = |QL(0)| (3.14)15



(re
all (1.7)). We will 
hoose our �ow su
h that
f(σ′, σ′′)

=











ν0(σ), if σ′ = σ, σ′′ = γσ(1) for some σ ∈ CL,
∑

σ̃∈CL
f(γσ̃(k − 1), γσ(k)), if σ′ = γσ(k), σ′′ = γσ(k + 1) for some k ≥ 1, σ ∈ CL,

0, otherwise. (3.15)Here, ν0 is some initial distribution on CL that will turn out to be arbitrary as long as itssupport is all of CL.We see from (3.15) that the �ow in
reases whenever paths merge. In our 
ase this happensonly after the �rst step, when the protuberan
e at y is removed. Therefore we get theexpli
it form
f(σ′, σ′′) =











ν0(σ), ifσ′ = σ, σ′′ = γσ(1) for some σ ∈ CL,

Cν0(σ), ifσ′ = γσ(k), σ′′ = γσ(k + 1) for some k ≥ 1, σ ∈ CL,

0, otherwise, (3.16)where C = 2ℓc is the number of possible positions of the protuberan
e on the proto-
riti
aldroplet (see Fig. 6). Using Proposition 2.4, we therefore haveCAP(SL,Sc) = CAP(Sc,SL) ≥ CAP(CL,SL)

≥
∑

σ∈CL

ν0(σ)

[

K−1
∑

k=0

f(γσ(k), γσ(k + 1))

µβ(γσ(k))cβ(γσ(k), γσ(k + 1))

]−1

=
∑

σ∈CL

[

1

µβ(σ)cβ(γσ(0), γσ(1))
+

K−1
∑

k=1

C

µβ(γσ(k))cβ(γσ(k), γσ(k + 1))

]−1

.(3.17)Thus, all we have to do is to 
ontrol the sum between square bra
kets.Be
ause cβ(γσ(0), γσ(1)) = 1 (removing the protuberan
e lowers the energy), the termwith k = 0 equals 1/µβ(σ). To show that the terms with k ≥ 1 are of higher order, weargue as follows. Abbreviate Ξ = h(ℓc − 2). For every k ≥ 1 and σ(0) ∈ CL, we have (seeFig. 9 and re
all (1.2�1.3))
µβ(γσ(k))cβ(γσ(k), γσ(k+1)) =

1

Zβ

e−β[Hβ(γσ(k))∨Hβ(γσ(k+1))] ≥ µβ(σ0) eβ[2J−h−Ξ] = µβ(σ)eβδ ,(3.18)where δ = 2J − h − Ξ = 2J − h(ℓc − 1) > 0 (re
all (1.6)). Therefore
K−1
∑

k=1

C

µβ(γσ(k))cβ(γσ(k), γσ(k + 1))
≤ 1

µβ(σ)
CKe−δβ, (3.19)and so from (3.17) we getCAP(SL,Sc) ≥

∑

σ∈CL

µβ(σ)

1 + CKe−βδ
=

µβ(CL)

1 + CKe−βδ
= [1 + o(1)]µβ(CL). (3.20)16



2J − h

2J − h − Ξ

σ0

Figure 9. Visualization of (3.18).The last step is to estimate, with the help of (3.13),
µβ(CL) =

1

Zβ

∑

σ∈CL

e−βHβ(σ) =
1

Zβ

∑

σ∈SL∩W

∑

x,y∈Λβ
(x,y)⊥σ

e−βHβ(σ∪P(y)(x))

= e−βΓ 1

Zβ

∑

σ∈SL∩W

e−βHβ(σ)
∑

x,y∈Λβ
(x,y)⊥σ

1

≥ e−βΓ µβ(SL ∩W)N1 |Λβ| [1 − (ℓc + 1)2/f(β)].

(3.21)
The last inequality uses that |Λβ|(ℓc +1)2/f(β) is the maximal number of sites in Λβ whereit is not possible to insert a non-intera
ting 
riti
al droplet (re
all (3.12) and note that a
riti
al droplet �ts inside an ℓc × ℓc square). A

ording to Lemma A.1 in Appendix A, wehave

µβ(SL ∩W) = µβ(SL)[1 + o(1)], (3.22)while 
onditions (1.8�1.9) imply that µβ(SL) = µβ(S)[1+o(1)]. Combining the latter with(3.20�3.21), we obtain the desired lower bound.3.2. Proof of Theorem 1.2(b). We use the same te
hnique as in Se
tion 3.1, whi
h iswhy we only give a sket
h of the proof.To estimate the average 
rossover time from SL ⊂ S to Sc\C, we will use Proposition 2.1.With A = SL and B = Sc\C, (2.10) reads
∑

σ∈SL

ν
Sc\C
SL

(σ) Eσ(τSc\C) =
1CAP(SL,Sc\C)

∑

σ∈S∪C

µβ(σ)hSL,Sc\C(σ). (3.23)The left-hand side is the quantity of interest in (1.17).In Se
tions 3.2.1�3.2.2 we estimate ∑σ∈S∪C µβ(σ)hSL,Sc\C(σ) and CAP(SL,Sc\C). Theestimates will show thatr.h.s. (3.23) =
1

N2|Λβ|
eβΓ [1 + o(1)], β → ∞. (3.24)3.2.1. Estimate of ∑σ∈S∪C µβ(σ)hSL,Sc\C(σ).Lemma 3.3. ∑σ∈S∪C µβ(σ)hSL,Sc\C(σ) = µβ(S)[1 + o(1)] as β → ∞.Proof. Write, using (2.1),

∑

σ∈S∪C

µβ(σ)hSL,Sc\C(σ) = µβ(SL) +
∑

σ∈(S\SL)∪C

µβ(σ)Pσ(τSL
< τSc\C). (3.25)17



The last sum is bounded above by µβ(S\SL) + µβ(C). As before, µβ(S\SL) = o(µβ(S)) as
β → ∞. But (1.35) and (3.9) imply that µβ(C) = o(µβ(S)) as β → ∞.3.2.2. Estimate of CAP(SL,Sc\C).Lemma 3.4. CAP(S,Sc\C) = N2 |Λβ |e−βΓµβ(S)[1+o(1)] as β → ∞ with N2 = 4

3 (2ℓc−1).Proof. The proof is similar as that of Lemma 3.2, ex
ept that it takes 
are of the transitionprobabilities away from the 
riti
al droplet.Upper bound: Re
alling (2.13�2.15) and noting that Glauber dynami
s does not allowtransitions within C, we have, for all h : C → [0, 1],CAP(SL,Sc\C) ≤ CAP(S,Sc\C) ≤
∑

σ∈C

µβ(σ)
[

ĉσ(h(σ) − 1)2 + čσ(h(σ) − 0)2
]

, (3.26)where ĉσ =
∑

η∈S cβ(σ, η) and čσ =
∑

η∈Sc\C cβ(σ, η). The quadrati
 form in the right-hand side of (3.26) a
hieves its minimum for h(σ) = ĉσ/(ĉσ + čσ), soCAP(SL,Sc\C) ≤
∑

σ∈C

Cσ µβ(σ) (3.27)with Cσ = ĉσ čσ/(ĉσ + čσ). We have
∑

σ∈C

Cσ µβ(σ) =
1

Zβ

∑

σ∈P

∑

x∈Λβ
σx∈C

Cσx e−βHβ(σx)

= e−β(2J−h) 1

Zβ

∑

σ∈P

e−βHβ(σ) 2
(

1
2 4 + 2

3(2ℓc − 4)
)

= e−β(2J−h) µβ(P)N2 =
1

N1
µβ(C)N2,

(3.28)
where in the se
ond line we use that Cσ = 1

2 if σ has a protuberan
e in a 
orner (2 × 4
hoi
es) and Cσ = 2
3 otherwise (2 × (2ℓc − 4) 
hoi
es).

σ0 σ1 σ2

d(σ0, σ1) = 1/2 d(σ1, σ2) = 1 d(σ2, σ3) = 1Figure 10. Canoni
al order to break down a proto-
riti
al droplet plus a doubleprotuberan
e. In the �rst step, the double protuberan
e has probability 1
2 tobe broken down in either of the two possible ways. The subsequent steps aredeterministi
 as in Fig. 6.Lower bound: In analogy with (3.13), denoting by P 2

(y)(x) the droplet obtained by addinga double protuberan
e at y along the longest side of the re
tangle Rℓc−1,ℓc
(x), we de�nethe set DL ⊂ Sc\C by

DL = {σ ∪ P 2
(y)(x) : σ ∈ SL ∩W, x, y ∈ Λβ, (x, y)⊥σ}. (3.29)As in (3.15), we may 
hoose any starting measure on DL. We 
hoose the �ow as follows.For the �rst step we 
hoose

f(σ′, σ) = 1
2 ν0(σ), σ′ ∈ DL, σ ∈ CL, (3.30)18



whi
h redu
es the double protuberan
e to a single protuberan
e (
ompare (3.13) and(3.29)). For all subsequent steps we follow the deterministi
 paths γσ used in Se
tion 3.1.2,whi
h start from γσ(0) = σ. Note, however, that we get di�erent values for the �ows
f(γσ(0), γσ(1)) depending on whether the protuberan
e sits in a 
orner or not. In theformer 
ase, it has only one possible ante
edent, and so

f(γσ(0), γσ(1)) = 1
2 ν0(σ), (3.31)while in the latter 
ase it has two ante
edents, and so

f(γσ(0), γσ(1)) = ν0(σ). (3.32)This time the terms k = 0 and k = 1 are of the same order while, as in (3.19), all thesubsequent steps give a 
ontribution that is a fa
tor O(e−δβ) smaller. Indeed, in analogywith (3.17) we obtain, writing σ ∼ σ′ when cβ(σ′, σ) > 0,CAP(SL,Sc\C) = CAP(Sc\C,SL) ≥ CAP(DL,SL)

≥
∑

σ′∈DL

1
2

∑

σ∈CL
σ∼σ′

[

f(σ′, σ)

µβ(σ)
+

f(σ, γσ(1))

µβ(σ)
+

K−1
∑

k=1

f(γσ(k), γσ(k + 1))

µβ(γσ(k))cβ(γσ(k), γσ(k + 1))

]−1

≥
∑

σ′∈DL

1
2

∑

σ∈CL
σ∼σ′

µβ(σ)
[

f(σ′, σ) + f(σ, γσ(1)) + CKe−βδ
]−1

= [1 + o(1)]µβ(CL)

(

2ℓc − 4

2ℓc

1

1 + 1
2

+
1

2

4

2ℓc

1
1
2 + 1

2

)

= [1 + o(1)]µβ(CL)
N2

N1
.

(3.33)
Using (3.21) and the remarks following it, we get the desired lower bound.3.3. Proof of Theorem 1.2(
). Write

∑

σ∈Dc
M

µβ(σ)hSL,DM
(σ) =

∑

σ∈SL

µβ(σ)hSL,DM
(σ) +

∑

σ∈Dc
M

\SL

µβ(σ)hSL,DM
(σ)

= µβ(SL) +
∑

σ∈Dc
M

\SL

µβ(σ)Pσ(τSL
< τDM

).
(3.34)The last sum is bounded above by µβ(S\SL) + µβ(Dc

M\S). But µβ(S\SL) = o(µβ(S)) as
β → ∞ by our 
hoi
e of L in (1.9), while µβ(Dc

M\S) = o(µβ(S)) as β → ∞ be
ause of therestri
tion ℓc ≤ M2ℓc − 1. Indeed, under that restri
tion the energy of a square droplet ofsize M is stri
tly larger than the energy of a 
riti
al droplet.Proof. The proof of Theorem 1.2(
) follows along the same lines as that of Theorems 1.2(a�b) in Se
tions 3.1�3.2. The main point is to prove that CAP(SL,DM ) = [1+o(1)]CAP(SL,Sc\C).Sin
e CAP(SL,DM ) ≤ CAP(SL,Sc\C), whi
h was estimated in Se
tion 3.2, we need onlyprove a lower bound on CAP(SL,DM ). This is done by using a �ow that breaks down an
M × M droplet to a square or quasi-square droplet QL in the 
anoni
al way, whi
h takes
M2 − v(L) steps (re
all Fig. 6 and (3.14)). The leading terms are still the proto-
riti
aldroplet with a single and a double protuberan
e. To ea
h M × M droplet is asso
iateda unique 
riti
al droplet, so that the pre-fa
tor in the lower bound is the same as in theproof of Theorem 1.2(b).Note that we 
an even allow M to grow with β as M = eo(β). Indeed, (3.11�3.12) showthat there is room enough to add a droplet of size eo(β) almost everywhere in Λβ, and thefa
tor M2e−δβ repla
ing Ke−δβ in (3.20) still is o(1).19



4. Proof of Theorem 1.44.1. Proof of Theorem 1.4(a).4.1.1. Estimate of ∑σ∈S∪(C̃\C+) µβ(σ)hSL,(Sc\C̃)∪C+(σ).Lemma 4.1. ∑σ∈S∪(C̃\C+) µβ(σ)hSL,(Sc\C̃)∪C+(σ) = µβ(S)[1 + o(1)] as β → ∞.Proof. Write, using (2.1),
∑

σ∈S∪(C̃\C+)

µβ(σ)hSL,(Sc\C̃)∪C+(σ)

= µβ(SL) +
∑

σ∈(S\SL)∪(C̃\C+)

µβ(σ)Pσ

(

τSL
< τ(Sc\C̃)∪C+

)

.
(4.1)The last sum is bounded above by µβ(S\SL) + µβ(C̃\C+). But µβ(S\SL) = o(µβ(S)) as

β → ∞ by our 
hoi
e of L in (1.32). In Lemma B.3 in Appendix B.3 we will show that
µβ(C̃\C+) = o(µβ(S)) as β → ∞.4.1.2. Estimate of CAP(SL, (Sc\C̃) ∪ C+).Lemma 4.2. CAP(SL,Sc\C̃) ∪ C+) = N |Λβ | 4π

β∆ e−βΓµβ(S)[1 + o(1)] as β → ∞ with
N = 1

3ℓ2
c(ℓ

2
c − 1).Proof. The argument is in the same spirit as that in Se
tion 3.1.2. However, a number ofadditional hurdles need to be taken that 
ome from the 
onservative nature of Kawasakidynami
s. The proof pro
eeds via upper and lower bounds, and takes up quite a bit ofspa
e.Upper bound: The proof 
omes in 7 steps.

S

C− C+

C̃Figure 11. S
hemati
 pi
ture of the sets S, C−, C+ de�ned in De�nition 1.3and the set C̃ interpolating between C− and C+.1. Proto-
riti
al droplet and free parti
le. Let C̃ denote the set of 
on�gurations�interpolating� between C− and C+, in the sense that the free parti
le is somewhere betweenthe boundary of the proto-
riti
al droplet and the boundary of the box of size Lβ aroundthe proto-
riti
al droplet (see Fig. 11). Then we haveCAP(SL, (Sc\C̃) ∪ C+) ≤ CAP(S ∪ C−, (Sc\C̃) ∪ C+)

= min
h : X

(nβ )

β
→[0,1]

h|
S∪C−

≡1, h|
(Sc\C̃)∪C+≡0

1
2

∑

σ,σ′∈X
(nβ )

β

µβ(σ)cβ(σ, σ′) [h(σ) − h(σ′)]2.(4.2)20



Split the right-hand side into a 
ontribution 
oming from σ, σ′ ∈ C̃ and the rest:r.h.s.(4.2) = I + γ1(β), (4.3)where
I = min

h : C̃→[0,1]
h|

C−
≡1, h|

C+≡0

1
2

∑

σ,σ′∈C̃

µβ(σ)cβ(σ, σ′) [h(σ) − h(σ′)]2 (4.4)and γ1(β) is an error term that will be estimated in Step 7. This term will turn out tobe small be
ause µβ(σ)cβ(σ, σ′) is small when either σ ∈ X (nβ)
β \C̃ or σ′ ∈ X (nβ)

β \C̃. Next,partition C̃, C−, C+ into sets C̃(x), C−(x), C+(x), x ∈ Λβ, by requiring that the lower-left
orner of the proto-
riti
al droplet is in the 
enter of the box BLβ ,Lβ
(x). Then, be
ause

cβ(σ, σ′) = 0 when σ ∈ C̃(x) and σ′ ∈ C̃(x′) for some x 6= x′, we may write
I = |Λβ| min

h : C̃(0)→[0,1]
h|

C−(0)
≡1, h|

C+(0)
≡0

1
2

∑

σ,σ′∈C̃(0)

µβ(σ)cβ(σ, σ′) [h(σ) − h(σ′)]2. (4.5)2. De
omposition of 
on�gurations. De�ne (
ompare with (3.6))
Ĉ(0) =

{

σ1BLβ,Lβ
(0) : σ ∈ C̃(0)

}

,

Č(0) =
{

σ1[BLβ,Lβ
(0)]c : σ ∈ C̃(0)

}

.
(4.6)Then every σ ∈ C̃(0) 
an be uniquely de
omposed as σ = σ̂ ∨ σ̌ for some σ̂ ∈ Ĉ(0) and

σ̌ ∈ Č(0). Note that Ĉ(0) has K = ℓc(ℓc − 1) + 2 parti
les and Č(0) has nβ − K parti
les(and re
all that, by the �rst half of (1.35), nβ → ∞ as β → ∞). De�ne
Cfp(0) =

{

σ ∈ C̃(0) : Hβ(σ) = Hβ(σ̂) + Hβ(σ̌)
}

, (4.7)i.e., the set of 
on�gurations 
onsisting of a proto-
riti
al droplet and a free parti
le inside
BLβ ,Lβ

(0) not intera
ting with the parti
les outside BLβ ,Lβ
(0). Write Cfp,−(0) and Cfp,+(0)to denoting the subsets of Cfp(0) where the free parti
le is at distan
e Lβ , respe
tively, 2from the proto-
riti
al droplet. Split the right-hand side of (4.5) into a 
ontribution 
omingfrom σ, σ′ ∈ Cfp(0) and the rest:r.h.s.(4.5) = |Λβ | [II + γ2(β)], (4.8)where

II = min
h : Cfp(0)→[0,1]

h|
Cfp,−(0)

≡1, h|
Cfp,+(0)

≡0

1
2

∑

σ,σ′∈Cfp(0)

µβ(σ)cβ(σ, σ′) [h(σ) − h(σ′)]2 (4.9)and γ2(β) is an error term that will be estimated in Step 6. This term will turn out to besmall be
ause of loss of entropy when the parti
le is at the boundary.3. Redu
tion to 
apa
ity of simple random walk. Estimate
II = min

h : Cfp(0)→[0,1]
h|

Cfp,−(0)
≡1, h|

Cfp,+(0)
≡0

1
2

∑

σ̌,σ̌′∈Č(0)

∑

σ̂,σ̂′∈Ĉ(0):

σ̂∨σ̌,σ̂′∨σ̌′∈Cfp(0)

µβ(σ̂ ∨ σ̌) cβ(σ̂ ∨ σ̌, σ̂′ ∨ σ̌′) [h(σ̂ ∨ σ̌) − h(σ̂′ ∨ σ̌′)]2

≤ min
g : Ĉ(0)→[0,1]

g|
Ĉ−(0)

≡1, g|
Ĉ+(0)

≡0

1
2

∑

σ̌∈Č(0)

∑

σ̂,σ̂′∈Ĉ(0):

σ̂∨σ̌,σ̂′∨σ̌∈Cfp(0)

µβ(σ̂ ∨ σ̌) cβ(σ̂ ∨ σ̌, σ̂′ ∨ σ̌) [g(σ̂) − g(σ̂′)]2, (4.10)21



where Ĉ−(0), Ĉ(0)+ denote the subsets of Ĉ(0) where the free parti
le is at distan
e Lβ,respe
tively, 2 from the proto-
riti
al droplet, and the inequality 
omes from substituting
h(σ̂ ∨ σ̌) = g(σ̂), σ̂ ∈ Ĉ(0), σ̌ ∈ Č(0), (4.11)and afterwards repla
ing the double sum over σ̌, σ̌′ ∈ Č(0) by the single sum over σ̌ ∈ Č(0)be
ause cβ(σ̂ ∨ σ̌, σ̂′ ∨ σ̌′) > 0 only if either σ̂ = σ̂′ or σ̌ = σ̌′ (the dynami
s updates onesite at a time). Next, estimater.h.s.(4.10)

≤
∑

σ̌∈Č(0)

1

Z
(nβ)
β

e−βHβ(σ̌) min
g : Ĉ(0)→[0,1]

g|
Ĉ−(0)

≡1, g|
Ĉ+(0)

≡0

1
2

∑

σ̂,σ̂′∈Ĉ(0)

σ̂∨σ̌,σ̂′∨σ̌∈Cfp(0)

e−βHβ(σ̂) cβ(σ̂, σ̂′) [g(σ̂) − g(σ̂′)]2,(4.12)where we used Hβ(σ) = Hβ(σ̂) + Hβ(σ̌) from (4.7) and write cβ(σ̂, σ̂′) to denote the tran-sition rate asso
iated with the Kawasaki dynami
s restri
ted to BLβ ,Lβ
(0), whi
h 
learlyequals cβ(σ̂ ∨ σ̌, σ̂′ ∨ σ̌) for every σ̌ ∈ Č(0) su
h that σ̂ ∨ σ̌, σ̂′ ∨ σ̌ ∈ Cfp(0) be
ause thereis no intera
tion between the parti
les inside and outside BLβ ,Lβ

(0). The minimum in ther.h.s. of (4.12) 
an be estimated from above by
∑

σ∈P(0)

Vβ(σ) (4.13)with P(0) the set of proto-
riti
al droplets with lower-left 
orner at 0, and
Vβ(σ) = min

f : Z2→[0,1]
f |Pσ(0)≡1, f |[BLβ,Lβ

(0)]c≡0

1
2

∑

x,x′∈Z2

x∼x′

[f(x) − f(x′)]2, (4.14)where Pσ(0) is the support of the proto-
riti
al droplet in σ, and x ∼ x′ means that xand x′ are neighboring sites. Indeed, (4.13) is obtained from the expression in (4.12) bydropping the restri
tion σ̂ ∨ σ̌, σ̂′ ∨ σ̌ ∈ Cfp(0), substituting
g(Pσ(0) ∪ {x}) = f(x), σ ∈ P(0), x ∈ BLβ ,Lβ

(0)\Pσ(0), (4.15)and noting that cβ(Pσ(0) ∪ {x}, Pσ(0) ∪ {x′}) = 1 when x ∼ x′ and zero otherwise. What(4.13) says is that
Vβ(σ) = CAP(Pσ(0), [BLβ .Lβ

(0)]c) (4.16)is the 
apa
ity of simple random walk between the proto-
riti
al droplet Pσ(0) in σ andthe exterior of BLβ .Lβ
(0). Now, de�ne

Ž
(n−K)
β (0) =

∑

σ̌∈Č(0)

e−βHβ(σ̌). (4.17)Then we obtain via (4.13) thatr.h.s.(4.12) ≤ e−βΓ∗ Ž
(n−K)
β (0)

Z
(nβ)
β

∑

σ∈P(0)

Vβ(σ), (4.18)where Γ∗ = −U [(ℓc − 1)2 + ℓc(ℓc − 1)+1] is the binding energy of the proto-
riti
al droplet(
ompare with (1.33)).4. Capa
ity estimate. For future referen
e we state the following estimate on 
apa
itiesfor simple random walk.Lemma 4.3. Let U ⊂ Z
2 be any set su
h that {0} ⊂ U ⊂ Bk,k(0), with k ∈ N ∪ {0}independent of β. Let V ⊂ Z

2 be any set su
h that [BKLβ ,KLβ
(0)]c ⊂ V ⊂ [BLβ ,Lβ

(0)]c,with K ∈ N independent of β. ThenCAP ({0}, [BKLβ ,KLβ
(0)]c

)

≤ CAP (U, V ) ≤ CAP (Bk,k(0), [BLβ ,Lβ
(0)]c

)

. (4.19)22



Moreover, via (1.29�1.30),CAP (Bk,k(0), [BKLβ ,KLβ
(0)]c

)

= [1+o(1)]
2π

log(KLβ) − log k
= [1+o(1)]

4π

β∆
, β → ∞.(4.20)Proof. The inequalities in (4.19) follow from standard monotoni
ity properties of 
apa
ities.The asymptoti
 estimate in (4.20) for 
apa
ities of 
on
entri
 boxes are standard (see e.g.Lawler [20℄, Se
tion 2.3), and also follow by 
omparison to Brownian motion.We 
an apply Lemma 4.3 to estimate Vβ(σ) in (4.16), sin
e the proto-
riti
al droplet withlower-left 
orner in 0 �ts inside the box B2ℓc,2ℓc

(0). This gives
Vβ(σ) =

4π

β∆
[1 + o(1)], ∀σ ∈ P(0), β → ∞. (4.21)Morover, from Bovier, den Hollander, and Nardi [7℄, Lemmas 3.4.2�3.4.3, we know that

N = |P(0)|, the number of shapes of the proto-
riti
al droplet, equals N = 1
3ℓ2

c(ℓ
2
c − 1).5. Equivalen
e of ensembles. A

ording to Lemma B.1 in Appendix B, we have

Ž
(nβ−K)
β (0)

Z
(nβ)
β

= (ρβ)K µβ(S) [1 + o(1)], β → ∞. (4.22)This is an �equivalen
e of ensembles� property relating the probabilities to �nd nβ − K,respe
tively, nβ parti
les inside [BLβ ,Lβ
(0)]c (re
all (4.6)). Combining (4.2�4.3), (4.5),(4.8), (4.10), (4.12), (4.18) and (4.21�4.22), we getCAP(S, C+) ≤ γ1(β) + |Λβ|γ2(β) + N |Λβ |

4π

β∆
e−βΓ µβ(S) [1 + o(1)], β → ∞, (4.23)where we use that Γ∗ + ∆K = Γ de�ned in (1.33). This 
ompletes the proof of the upperbound, provided that the error terms γ1(β) and γ2(β) are negligible.6. Se
ond error term. To estimate the error term γ2(β), note that the 
on�gurationsin C̃(0)\Cfp(0) are those for whi
h inside BLβ ,Lβ
(0) there is a proto-
riti
al droplet whoselower-left 
orner is at 0, and a parti
le that is at the boundary and atta
hed to some 
lusteroutside BLβ ,Lβ

(0). Re
alling (4.5�4.9), we therefore have
γ2(β) ≤

∑

σ∈C̃(0)\Cfp(0)

∑

σ′∈C̃(0)

µβ(σ)cβ(σ, σ′) [h(σ) − h(σ′)]2 ≤ 6µβ(C̃(0)\Cfp(0)), (4.24)where we use that h : C̃(0) → [0, 1], µβ(σ)cβ(σ, σ′) = µβ(σ)∧µβ(σ′), and there are 6 possibletransitions from C̃(0)\Cfp(0) to C̃(0): 3 through a move by the parti
le at the boundary of
BLβ ,Lβ

(0) and 3 through a move by a parti
le in the 
luster outside BLβ ,Lβ
(0). Sin
e

Hβ(σ) ≥ Hβ(σ̂) + Hβ(σ̌) − U, σ ∈ C̃(0)\Cfp(0), (4.25)it follows from the same argument as in Steps 3 and 5 that
µβ(C̃(0)\Cfp(0)) ≤ N e−βΓ∗

(ρβ)K+1 µβ(S) eβU 4(K − 1) [1 + o(1)], (4.26)where (ρβ)K+1 
omes from the fa
t that nβ − (K + 1) parti
les are outside BLβ−1,Lβ−1(0)(on
e more use Lemma B.1 in Appendix B), eβU 
omes from the gap in (4.25), and 4(K−1)
ounts the maximal number of pla
es at the boundary of BLβ ,Lβ
(0) where the parti
le
an intera
t with parti
les outside BLβ ,Lβ

(0) due to the 
onstraint that de�nes S (re
allDe�nition 1.3)(a)). Sin
e ρβeβU = o(1) by (1.27), we therefore see that γ2(β) indeed issmall 
ompared to the main term of (4.23). 23



7. First error term. To estimate the error term γ1(β), we de�ne the sets of pairs of
on�gurations
I1 = {(σ, η) ∈ [X (nβ)

β ]2 : σ ∈ S, η ∈ Sc\C̃},

I2 = {(σ, η) ∈ [X (nβ)
β ]2 : σ ∈ C̃, η ∈ Sc\C̃},

(4.27)and estimate
γ1(β) ≤ 1

2

2
∑

i=1

∑

(σ,η)∈Ii

µβ(σ) cβ(σ, η) = 1
2Σ(I1) + 1

2Σ(I2). (4.28)The sum Σ(I1) 
an be written as
Σ(I1) = |Λβ |

∑

σ∈P

∑

η∈Sc\C̃

cβ(η, σ) 1
{

|supp[η] ∩ BLβ ,Lβ
(0)| = K

} 1

Z
(nβ)
β

e−βHβ(η), (4.29)where we use that µβ(σ)cβ(σ, η) = µβ(η)cβ(η, σ), σ, η ∈ X (nβ)
β , and cβ(η, σ) = 0, η ∈ Sc\C̃,

σ /∈ P (re
all De�nition 1.3(b)). We have
Hβ(η) ≥ Hβ(η̂) + Hβ(η̌) − kU, η ∈ Sc\C̃, (4.30)where k 
ounts the number of pairs of parti
les intera
ting a
ross the boundary of BLβ ,Lβ

(0).Moreover, sin
e η /∈ C̃, we have
Hβ(η̂) ≥ Γ∗ + U. (4.31)Inserting (4.30�4.31) into (4.29), we obtain

Σ(I1) ≤ |Λβ| e−βΓ∗
µβ(S) [1 + o(1)]

K
∑

k=0

(ρβ)K+k [4(K − 1)]k eβ(k−1)U

= |Λβ| e−βΓµβ(S) [1 + o(1)] e−βU ,

(4.32)where (ρβ)K+k 
omes from the fa
t that nβ − (K + k) parti
les are outside BLβ−1,Lβ−1(0)(on
e more use Lemma B.1 in Appendix B), and the inequality again uses an argumentsimilar as in Steps 3 and 5. Therefore Σ(I1) is small 
ompared to the main term of (4.23).The sum Σ(I2) 
an be estimated as
Σ(I2) =

∑

σ∈C̃

∑

η∈Sc\C̃

µβ(σ) cβ(σ, η)

= |Λβ |
∑

σ∈C̃(0)

µβ(σ)
∑

η∈Sc\C̃(0)

cβ(σ, η)

≤ |Λβ |µβ(C̃(0))
{

e−β U + (4Lβ) ρβ [1 + o(1)]
}

,

(4.33)where the �rst term 
omes from deta
hing a parti
le from the 
riti
al droplet and these
ond term from a extra parti
le entering BLβ ,Lβ
(0). The term between bra
es is o(1).Moreover, µβ(C̃(0)) = µβ(Cfp(0)) + µβ(C̃(0)\Cfp(0)). The se
ond term was estimated in(4.26), the �rst term 
an again be estimated as in Steps 3 and 5:

µβ(Cfp(0)) =
∑

σ̂∈Ĉ(0)

∑

σ̌∈Č(0)

σ̂∨σ̌∈Cfp(0)

µβ(σ̂ ∨ σ̌) = N e−βΓ∗ Ž
(nβ−K)
β (0)

Z
(nβ)
β

= N e−βΓ µβ(S) [1 + o(1)].(4.34)Therefore also Σ(I2) is small 
ompared to the main term of (4.23).Lower bound: The proof of the lower bound follows the same line of argument as forGlauber dynami
s in that it relies on the 
onstru
tion of a suitable unit �ow. This �owwill, however, be 
onsiderably more di�
ult. In parti
ular, we will no longer be able to24



get away with 
hoosing a deterministi
 �ow, and the full power of the Berman-Konsowavariational prin
iple has to be brought to bear. The proof 
omes in 5 steps.For future referen
e we state the following property of the harmoni
 fun
tion for simplerandom walk on Z
2.Lemma 4.4. Let g be the harmoni
 fun
tion of simple random walk on B2Lβ ,2Lβ

(0) (whi
his equal to 1 on {0} and 0 on [B2Lβ ,2Lβ
(0)]c). Then there exists a 
onstant C < ∞ su
hthat

∑

e

[g(z) − g(z + e)]+ ≤ C/Lβ ∀ z ∈ [BLβ ,Lβ
(0)]c. (4.35)Proof. See e.g. Lawler, S
hramm and Werner [21℄, Lemma 5.1. The proof 
an be given viathe estimates in Lawler [20℄, Se
tion 1.7, or via a 
oupling argument.1. Starting 
on�gurations. We start our �ow on a subset of the 
on�gurations in

C+ that is su�
iently large and su�
iently 
onvenient. Let C+
2 ⊂ C+ denote the setof 
on�gurations having a proto-
riti
al with lower-left 
orner at some site x ∈ Λβ, afree parti
le at distan
e 2 from this proto-
riti
al droplet, no other parti
les in the box

B2Lβ ,2Lβ
(x), and satisfying the 
onstraints in SL, i.e., all other boxes of size 2Lβ 
arry nomore parti
les than there are in a proto-
riti
al droplet. This is the same as C+, ex
eptthat the box around the proto-
riti
al droplet has size 2Lβ rather than Lβ.Let K = ℓc(ℓc−1)+2 be the volume of the 
riti
al droplet, and let S(nβ−K)

2 be the analogueof S when the total number of parti
les is nβ−K and the boxes in whi
h we 
ount parti
leshave size 2Lβ (
ompare with De�nition 1.3). Similarly as in (3.17), our task is to derivea lower bound for CAP(SL, (Sc\C̃) ∪ C+) = CAP((Sc\C̃) ∪ C+,SL) ≥ CAP(CL,SL), where
CL ⊂ C+

2 ⊂ C+ de�ned by
CL = {σ ∪ P(y)(x, z) : σ ∈ S(nβ−K)

2 , x, y ∈ Λβ, (x, y, z)⊥σ} (4.36)is the analog of (3.13), namely, the set of 
on�gurations obtained from S(nβ−K)
2 by addinga 
riti
al droplet somewhere in Λβ (lower-left 
orner at x, protuberan
e at y, free parti
leat z) su
h that it does not intera
t with the parti
les in σ and has an empty box of size

2Lβ around it. Note that the nβ −K parti
les 
an blo
k at most nβ(2Lβ)2 = o(|Λβ|) sitesfrom being the 
enter of an empty box of size 2Lβ, and so the 
riti
al parti
le 
an be addedat |Λβ | − o(|Λβ |) lo
ations.We partition CL into sets CL(x), x ∈ Λβ, a

ording to the lo
ation of the proto-
riti
aldroplet. It su�
es to 
onsider the 
ase where the 
riti
al droplet is added at x = 0, be
ausethe union over x trivially produ
es a fa
tor |Λβ |.2. Overall strategy. Starting from a 
on�guration in CL(0), we will su

essively pi
k
K − L parti
les from the 
riti
al droplet (starting with the free parti
le at z at distan
e
2) and move them out of the box BLβ ,Lβ

(0), pla
ing them essentially uniformly in theannulus B2Lβ ,2Lβ
(0)\BLβ ,Lβ

(0). On
e this has been a
hieved, the 
on�guration is in SL.Ea
h su
h move will produ
e an entropy of order L2
β, whi
h will be enough to 
ompensatefor the loss of energy in tearing down the droplet (re
all Fig. 4). The order in whi
h theparti
les are removed follows the 
anoni
al order employed in the lower bound for Glauberdynami
s (re
all Fig. 6). As for Glauber, we will use Proposition 2.4 to estimateCAP(CL,SL) ≥ |Λβ |

∑

σ∈CL(0)

∑

γ : γ0=σ

P
f (γ)

τ(γ)
∑

k=0

[

f(γk, γk+1)

µβ(γk)cβ(γk, γk+1)

]−1 (4.37)for a suitably 
onstru
ted �ow f and asso
iated path measure P
f , starting from someinitial distribution on CL(0) (whi
h as for Glauber will be irrelevant), and τ(γ) the timeat whi
h the last of the K − L parti
les exits the box BLβ ,Lβ

(0) .25



The di�eren
e between Glauber and Kawasaki is that, while in Glauber the droplet 
anbe torn down via single spin-�ips, in Kawasaki after we have deta
hed a parti
le from thedroplet we need to move it out of the box BLβ ,Lβ
(0), whi
h takes a large number of steps.Thus, τ(γ) is the sum of K − L stopping times, ea
h ex
ept the �rst of whi
h is a sumof two stopping times itself, one to deta
h the parti
le and one to move it out of the box

BLβ ,Lβ
(0). With ea
h motion of a single parti
le we need to gain an entropy fa
tor of order
lose to 1/ρβ . This will be done by 
onstru
ting a �ow that involves only the motion ofthis single parti
le, based on the harmoni
 fun
tion of the simple random walk in the box

B2Lβ ,2Lβ
(0) up to the boundary of the box BLβ ,Lβ

(0). Outside BLβ ,Lβ
(0) the �ow be
omesmore 
omplex: we modify it in su
h a way that a small fra
tion of the �ow, of order L−1+ǫ

βfor some ǫ > 0 small enough, is going into the dire
tion of removing the next parti
le fromthe droplet. The reason for this 
hoi
e is that we want to make sure that the �ow be
omessu�
iently small, of order L−2+ǫ
β , so that this 
an 
ompensate for the fa
t that the Gibbsweight in the denominator of the lower bound in (2.20) is redu
ed by a fa
tor e−βU whenthe protuberan
e is deta
hed. The reason for the extra ǫ is that we want to make surethat, along most of the paths, the protuberan
e is deta
hed before the �rst parti
le leavesthe box B2Lβ ,2Lβ

(0).On
e the protuberan
e deta
hes itself from the proto-
riti
al, the �rst parti
le stops andthe se
ond parti
le moves in the same way as the �rst parti
le did when it moved awayfrom the proto-
riti
al droplet, and so on. This is repeated until no more than L parti
lesremain in BLβ ,Lβ
(0), by whi
h time we have rea
hed SL. As we will see, the only signi�
ant
ontribution to the lower bound 
omes from the motion of the �rst parti
le (as for Glauber),and this 
oin
ides with the upper bound established earlier. The details of the 
onstru
tionare to some extent arbitrary and there are many other 
hoi
es imaginable.3. First parti
le. We �rst 
onstru
t the �ow that moves the parti
le at distan
e 2 fromthe proto-
riti
al droplet to the boundary of the box BLβ ,Lβ

(0). This �ow will 
onsist ofindependent �ows for ea
h �xed shape and lo
ation of the 
riti
al droplet. This �rst partof the �ow will be seen to produ
e the essential 
ontribution to the lower bound.We label the 
on�gurations in CL(0) by σ, des
ribing the shape of the 
riti
al droplet, aswell as the 
on�guration outside the box B2Lβ ,2Lβ
(0), and we label the position of the freeparti
le in σ by z1(σ).Let g be the harmoni
 fun
tion for simple random walk with boundary 
onditions 0 on

[B2Lβ ,2Lβ
(0)]c and 1 on the 
riti
al droplet. Then we 
hoose our �ow to be

f(σ(z), σ(z′)) =

{

C1 [g(z) − g(z + e)]+, if z′ = z + e, ‖e‖ = 1,

0, otherwise, (4.38)where σ(z) is the 
on�guration obtained from σ by pla
ing the �rst parti
le at site z. The
onstant C1 is 
hosen to ensure that f de�nes a unit �ow in the sense of De�nition 2.3,i.e.,
∑

σ∈CL(0)

C1

∑

z1(σ),e

[g(z1(σ)) − g(z1(σ) + e)] = C1

∑

σ∈CL(0)

CAP (Pσ(0), [B2Lβ ,2Lβ
(0)]c

)

= 1,(4.39)where Pσ(0) denotes the support of the proto-
riti
al droplet in σ, and the 
apa
ity refersto the simple random walk.Now, let z1(k) be the lo
ation of the �rst parti
le at time k, and
τ1 = inf{k ∈ N : z1(k) ∈ [BLβ ,Lβ

(0)]c} (4.40)26



be the �rst time when, under the Markov 
hain asso
iated to the �ow f , it exits BLβ ,Lβ
(0).Let γ be a path of this Markov 
hain. Then, by (4.38�4.39), we have

τ1
∑

k=0

f(γk, γk+1)

µβ(γk)cβ(γk, γk+1)
=

C1[g(z1(0)) − g(z1(τ1))]

µβ(γ0)
(4.41)where the sum over the g's is teles
oping be
ause only paths along whi
h the g-fun
tionde
reases 
arry positive probability, and cβ(γk, γk+1) = 1 for all 0 ≤ k ≤ τ1 be
ause the�rst parti
le is free. We have g(z1(0)) = 1, while, by Lemma 4.4, there exists a C < ∞su
h that

g(x) ≤ C/ log Lβ, x ∈ [BLβ ,Lβ
(0)]c. (4.42)Therefore

τ1
∑

k=0

f(γk, γk+1)

µβ(γk)cβ(γk, γk+1)
=

C1

µβ(γ0)
[1 + o(1)]. (4.43)Next, by Lemma 4.3, we haveCAP(Pσ(0), [B2Lβ ,2Lβ

(0)]c
)

=
4π

β∆
[1 + o(1)], σ ∈ CL(0), β → ∞, (4.44)(be
ause {0} ⊂ Pσ(0) ⊂ B2ℓc.2ℓc

(0) for all σ ∈ CL(0)). Sin
e N = |CL(0)|, it follows from(4.39) that
1

C1
= N

4π

β∆
[1 + o(1)], (4.45)and so (4.43) be
omes





τ1
∑

k=0

f(γk, γk+1)

µβ(γk)cβ(γk, γk+1)





−1

= µβ(γ0)N
4π

β∆
[1 + o(1)]. β → ∞, (4.46)This is the 
ontribution we want, be
ause when we sum (4.46) over γ0 = σ ∈ CL(0) (re
all(4.37)), we get a fa
tor

µβ(CL(0)) = e−βΓ µβ(S) [1 + o(1)]. (4.47)To see why (4.47) is true, re
all from (4.36) that CL(0) is obtained from S(nβ−K)
2 by addinga 
riti
al droplet with lower-left 
orner at the origin that does not intera
t with the nβ −Kparti
les elsewhere in Λβ. Hen
e

µβ(CL(0)) = e−βΓ∗ Z̃
(nβ−K)
β (0)

Z
(nβ)
β

, (4.48)where Z̃
(nβ−K)
β (0) is the analog of Ž

(nβ−K)
β (0) (de�ned in (4.17)) obtained by requiringthat the nβ −K parti
les are in [Rℓc,ℓc
(0)]c instead of [BLβ ,Lβ

(0)]c. However, it will followfrom the proofs of Lemmas B.1�B.2 in Appendix B that, just as in (4.22),
Z̃

(nβ−K)
β (0)

Z
(nβ)
β

= (ρβ)K µβ(S) [1 + o(1)], βτ∞, (4.49)whi
h yields (4.47) be
ause Γ = Γ∗ + K∆. For the remaining part of the 
onstru
tion ofthe �ow it therefore su�
es to ensure that the sum beyond τ1 gives a smaller 
ontribution.4. Se
ond parti
le. On
e the �rst parti
le (i.e., the free parti
le) has left the box
BLβ ,Lβ

(0), we need to allow the se
ond parti
le (i.e., the protuberan
e) to deta
h itselffrom the proto-
riti
al droplet and to move out of BLβ ,Lβ
(0) as well. The problem is thatdeta
hing the se
ond parti
le redu
es the Gibbs weight appearing in the denominator by27



e−Uβ, while the in
rements of the �ow are redu
ed only to about 1/Lβ . Thus, we 
annotimmediately deta
h the se
ond parti
le. Instead, we do this with probability L−1+ǫ
β only.The idea is that, on
e the �rst parti
le is outside BLβ ,Lβ

(0), we leak some of the �ow thatdrives the motion of the �rst parti
le into a �ow that deta
hes the se
ond parti
le. To dothis, we have to �rst 
onstru
t a leaky �ow in B2Lβ ,2Lβ
(0)\BLβ ,Lβ

(0) for simple randomwalk. This goes as follows.Let p(z, z + e) denote the transition probabilities of simple random walk driven by theharmoni
 fun
tion g on B2Lβ ,2Lβ
(0). Put

p̃(z, z + e) =

{

p(z, z + e), if z ∈ BLβ ,Lβ
(0),

(1 − L−1+ǫ
β ) p(z, z + e), if z ∈ B2Lβ ,2Lβ

(0)\BLβ ,Lβ
(0).

(4.50)Use the transition probabilities p̃(z, z + e) to de�ne a path measure P̃ . This path measuredes
ribes simple random walk driven by g, but with a killing probability L−1+ǫ
β inside theannulus B2Lβ ,2Lβ

(0)\BLβ ,Lβ
(0). Put

k(z, z + e) =
∑

γ

P̃ (γ)1(z,z+e)∈γ , z ∈ B2Lβ ,2Lβ
(0). (4.51)This edge fun
tion satis�es the following equations:

• k(z, z + e) = [g(z) − g(z + e)]+,if z ∈ BLβ ,Lβ
(0),

• k(z, z + e) = 0,if z ∈ B2Lβ ,2Lβ
(0)\BLβ ,Lβ

(0) and [g(z) − g(z + e)]+ = 0,

• (1 − L−1+ǫ
β )

∑

e

k(z + e, z)1g(z+e)−g(z)>0 =
∑

e

k(z, z + e)1g(z)−g(z+e)>0if z ∈ B2Lβ ,2Lβ
(0)\BLβ ,Lβ

(0).

(4.52)
Note that inside the annulus B2Lβ ,2Lβ

(0)\BLβ ,Lβ
(0) at ea
h site the �ow out is less thanthe �ow in by a leaking fa
tor 1 − L−1+ǫ

β . We pi
k ǫ > 0 so small that
eβU is exponentially smaller in β than L2−ǫ

β , (4.53)(whi
h is possible by (1.27) and (1.29�1.30)). The important fa
t for us is that this leaky�ow is dominated by the harmoni
 �ow asso
iated with g, in parti
ular, the �ow in satis�es
∑

e

k(z + e, z) ≤
∑

e

[g(z + e) − g(z)]+ ∀ z ∈ B2Lβ ,2Lβ
(0), (4.54)(and the same applies for the �ow out). This inequality holds be
ause g satis�es the sameequations as in (4.50�4.51) but without the leaking fa
tor 1 − L−1+ǫ

β .Using this leaky �ow, we 
an now 
onstru
t a �ow involving the �rst two parti
les, asfollows:
• f(σ(z1, a), σ(z1 + e, a)) = C1k(z1, z1 + e),if z1 ∈ B2Lβ ,2Lβ

(0),

• f(σ(z1, a), σ(z1, b)) = C1L
−1+ǫ
β

∑

e

k(z1, z1 + e),if z1 ∈ B2Lβ ,2Lβ
(0)\BLβ ,Lβ

(0),

• f(σ(z1, z2), σ(z1, z2 + e)) =

{

C1L
−1+ǫ
β

∑

e

k(z1, z1 + e)

}

[g(z2) − g(z2 + e)]+,if z1 ∈ B2Lβ ,2Lβ
(0)\BLβ ,Lβ

(0), z2 ∈ BLβ ,Lβ
(0)\Pσ(0).

(4.55)
28



Here, we write a and b for the lo
ations of the se
ond parti
le prior and after it deta
hesitself from the proto-
riti
al droplet, and σ(z1, z2) for the 
on�guration obtained from σ bypla
ing the �rst parti
le (that was at distan
e 2 from the proto-
riti
al droplet) at site z1and the se
ond parti
le (that was the protuberan
e) at site z2. The �ow for other motionsis zero, and the 
onstant C1 is the same as in (4.38�4.39)We next de�ne two further stopping times, namely,
ζ2 = inf{k ∈ N : z2(γk) = b}, (4.56)i.e., the �rst time the se
ond parti
le (the protuberan
e) deta
hes itself from the proto-
riti
al droplet, and

τ2 = inf{k ∈ N : z2(γk) ∈ [BLβ ,Lβ
(0)]c}, (4.57)i.e., the �rst time the se
ond parti
le exits the box BLβ ,Lβ
(0). Note that, sin
e we 
hoosethe leaking probability to be L−1+ǫ, the probability that ζ2 is larger than the �rst timethe �rst parti
le exits B2Lβ ,2Lβ

(0) is of order exp[−Lǫ
β] and hen
e is negligible. We willdisregard the 
ontributions of su
h paths in the lower bound. Paths with this propertywill be 
alled good.We will next show that (4.41) also holds if we extend the sum along any path of positiveprobability up to ζ2. The reason for this lies in Lemma �ow-lb.11. Let γ be a path thathas a positive probability under the path measure P

f asso
iated with f stopped at τ2. Wewill assume that this path is good in the sense des
ribed above. To that end we de
ompose
τ2
∑

k=0

f(γk, γk+1)

µβ(γk)cβ(γk, γk+1)

=

τ1
∑

k=0

f(γk, γk+1)

µβ(γk)cβ(γk, γk+1)
+

ζ2−2
∑

k=τ1+1

f(γk, γk+1)

µβ(γk)cβ(γk, γk+1)
+

τ2
∑

k=ζ2−1

f(γk, γk+1)

µβ(γk)cβ(γk, γk+1)

= I + II + III. (4.58)The term I was already estimated in (4.41�4.47). To estimate II, we use (4.42) and(4.54�4.55) to bound (
ompare with (4.41))
II ≤ C1

g(z1(ζ2)) − g(z1(τ1))

µβ(γ0)
≤ C1

[C/ log Lβ]

µβ(γ0)
, (4.59)whi
h is negligible 
ompared to I due to the fa
tor C/ log Lβ. It remains to estimate III.Note that

III =
f(γζ2−1, γζ2)

µβ(γζ2−1)cβ(γζ2−1, γζ2)
+

τ2
∑

k=ζ2

f(γk, γk+1)

µβ(γk)cβ(γk, γk+1)
. (4.60)The �rst term 
orresponds to the move when the protuberan
e deta
hes itself from theproto-
riti
al droplet. Its numerator is given by f(σ(z1, a), σ(z1, b)) (for some z1 ∈ [BLβ ,Lβ

(0)]c)whi
h, by Lemma 4.4 and (4.54�4.55), is smaller than C1L
−1+ǫ
β CL−1

β = C1CL−2+ǫ
β . Onthe other hand, its denominator is given by

µ(γζ2−1)cβ(γζ2−1, γζ2) = µβ(γ0)e
−Uβ. (4.61)The same holds for the denominators in all the other terms in III, while the numeratorsin these terms satisfy the bound

f(γk, γk+1) ≤ C1 C L−2+ǫ
β

[

g(z2(γk)) − g(z2(γk+1))
]

. (4.62)Adding up the various terms, we get that
III ≤ C1

µβ(γ0)
L−2+ǫ

β eβU
(

1 + [g(z2(ζ2)) − g(z2(τ2)]
)

≤ 2C1

µβ(γ0)
L−2+ǫ

β eβU . (4.63)29



The right-hand side is smaller than I by a fa
tor L−2+ǫ
β eβU , whi
h, by (4.53), is exponen-tially small in β.5. Remaining parti
les. The lesson from the previous steps is that we 
an 
onstru
ta �ow with the property that ea
h time we remove a parti
le from the droplet we gaina fa
tor L−2+ǫ

β , i.e., almost e−∆β. (This entropy gain 
orresponds to the gain from themagneti
 �eld in Glauber dynami
s, or from the a
tivity in Kawasaki dynami
s on a �niteopen box.) We 
an 
ontinue our �ow by tearing down the 
riti
al droplet in the sameorder as we did for Glauber dynami
s. Ea
h removal 
orresponds to a �ow that is builtin the same way as des
ribed in Step 4 for the se
ond parti
le. There will be some minormodi�
ations involving a negligible fra
tion of paths where a parti
le hits a parti
le thatwas moved out earlier, but this is of no 
onsequen
e. As a result of the 
onstru
tion, thesums along the remainders of these paths will give only negligible 
ontributions.Thus, we have shown that the lower bound 
oin
ides, up to a fa
tor 1 + o(1), with theupper bound and the lemma is proven.4.2. Proof of Theorem 1.4(b). The same observation holds as in (3.34).Proof. The proof of Theorem 1.4(b) follows along the same lines as that of Theorem 1.4(a).The main point is to prove that CAP(DM ,SL) = [1+o(1)]CAP(C+,SL). Sin
e CAP(SL,DM ) ≤CAP(SL, C+), we need only prove a lower bound on CAP(DM ,SL). This is done in almostexa
tly the same way as for Glauber, by using the 
onstru
tion given there and substitutingea
h Glauber move by a �ow involving the motion of just two parti
les.Note that, as long as M = eo(β), an M×M droplet 
an be added at |Λβ|−o(|Λβ |) lo
ationsto a 
on�guration σ ∈ S (
ompare with (4.36)). The only novelty is that we have to eventu-ally remove the 
loud of parti
les that is produ
ed in the annulus B2Lβ ,2Lβ
(0)\BLβ ,Lβ

(0).This is done in mu
h the same way as before. As long as only eo(β) parti
les have tobe removed, potential 
ollisions between parti
les 
an be ignored as they are su�
ientlyunlikely. Appendix A. Appendix: sparseness of sub
riti
al dropletsRe
all De�nition 1.1(a) and (3.11�3.12). In this se
tion we prove (3.22).Lemma A.1. limβ→∞
1
β

log
µβ(S\W)

µβ(S) = −∞.Proof. We will prove that limβ→∞
1
β

log µβ(S\W)/µβ(⊟) = −∞. Sin
e ⊟ ∈ S, this willprove the 
laim.Let f(β) be the fun
tion satisfying (3.11). We begin by noting that
µβ(S\W) ≤ µβ(I) with I =

{

σ ∈ S : |supp[CB(σ)]| > |Λβ |/f(β)
}

, (A.1)be
ause the bootstrap per
olation map in
reases the number of (+1)-spins. Let D(k)denote the set of 
on�gurations whose support 
onsists on k non-intera
ting sub
riti
alre
tangles. Put C1 = (ℓc + 2)(ℓc + 1). Sin
e the union of a sub
riti
al re
tangle and itsexterior boundary has at most C1 sites, it follows that in I there are at least |Λβ |/C1f(β)non-intera
ting re
tangles. Thus, we have
µβ(I) ≤

Kmax
∑

k=
|Λβ |

C1f(β)

F (k) with F (k) =
1

Zβ

∑

σ∈Xβ :

C(σ)∈D(k)

e−β Hβ(σ), (A.2)where Kmax ≤ |Λβ|. 30



Next, note that
F (k) ≤ (2C1)k

1

Zβ

∑

σ∈D(k)

e−βHβ(σ). (A.3)Sin
e the bootstrap per
olation map is downhill, the energy of a sub
riti
al re
tangle isbounded below by C2 = 2J−h (re
all Fig. 9), and the number of ways to pla
e k re
tanglesin Λβ is at most (|Λβ |
k

), it follows that
F (k) ≤ 2C1k

(|Λβ|
k

)

µβ(⊟) e−C2βk ≤ 2C1k (C1ef(β))k µβ(⊟) e−C2βk ≤ µβ(⊟) exp[−1
2C2 βk],(A.4)where the se
ond inequality uses that k! ≥ kke−k, k ∈ N, and the third inequality usesthat f(β) = eo(β). We thus have

Kmax
∑

k=
|Λβ |

C1f(β)

F (k) ≤ 2µβ(⊟) f(β)
|Λβ |
f(β)

exp

[

−1
2

C2

C1
β

|Λβ |
f(β)

]

, (A.5)whi
h is the desired estimate be
ause |Λβ |/f(β) tends to in�nity.Appendix B. Appendix: equivalen
e of ensembles and typi
ality of holesFor m ∈ N, let
S(m) =

{

σ ∈ X (m)
β : |supp[σ] ∩ BLβ ,Lβ

(x)| ≤ ℓc(ℓc − 1) + 1 ∀x ∈ Λβ

} (B.1)and
Č(m)(0) =

{

σ1∈BLβ,Lβ
(0) : σ ∈ S(m)

}

,

Ž
(m)
β (0) =

∑

σ∈Č(m)(0)

e−β H(σ). (B.2)The latter is the partition sum restri
ted to BLβ ,Lβ
(0) when it 
arries m parti
les. InAppendix B.1 we prove a lemma about ratios of partition sums that was used in(4.22),(4.26), (4.32) and (4.49). In Appendix B.2 we prove that limβ→∞ µβ(Š(0))/µβ(S) = 1,whi
h is needed in the proof of this lemma.B.1. Equivalen
e of ensembles. Re
all (1.22), (4.6) and (4.17).Lemma B.1. Ž

(nβ−s)
β (0)/Z

(nβ )
β = (ρβ)s µβ(S) [1 + o(1)] as β → ∞ for all s ∈ N.Proof. The proof pro
eeds via upper and lower bounds.Upper bound: Let

Š(0) =
{

σ ∈ S : supp[σ] ∩ BLβ ,Lβ
(0) = ∅

}

. (B.3)Write
µβ(Š(0)) =

1

Z
(nβ)
β

∑

σ̌∈Č(0)

∑

ζ⊂[BLβ,Lβ
(0)]c\supp[σ̌]

|ζ|=s

(

nβ

s

)−1 1{σ̌∨ζ∈Š(0)} e−βHβ(σ̌∨ζ). (B.4)This relation simply says that nβ parti
les 
an be pla
ed outside BLβ ,Lβ
(0) by �rst pla
ing

nβ − s parti
les and then pla
ing another s parti
les. Be
ause the intera
tion is attra
tive,we have
Hβ(σ̌ ∨ ζ) ≤ Hβ(σ̌) + Hβ(ζ) and Hβ(ζ) ≤ 0, ∀ σ̌, ζ. (B.5)31



Consequently,
µβ(Š(0)) ≥

(

nβ

s

)−1 1

Z
(nβ)
β

∑

σ̌∈Č(0)

e−βHβ(σ̌)
∑

ζ⊂[BLβ,Lβ
(0)]c\supp[σ̌]

|ζ|=s

1{σ̌∨ζ∈Š(0)}. (B.6)We next estimate the se
ond sum, uniformly in σ̌. When we add the s parti
les, we mustmake sure not to violate the requirement that all boxes BLβ ,Lβ
(x), x ∈ Λβ, 
arry not morethan K parti
les (note that Š(0) ⊂ S and re
all De�nition 1.3(a)). Partition Λβ\BLβ ,Lβ

(0)into boxes of size Lβ . The total number of boxes 
ontaining K parti
les is at most nβ/K.Hen
e, the total number of sites where we 
annot pla
e a parti
le is at most (nβ/K)(3Lβ)2.Therefore
∑

ζ⊂[BLβ,Lβ
(0)]c\{σ̌}

|ζ|=s

1{σ̌∨ζ∈Š(0)} ≥
(|Λβ\BLβ ,Lβ

(0)| − nβ − (nβ/K)(3Lβ)2

s

)

, ∀ σ̌. (B.7)But nβL2
β = o(nβ/ρβ) = o(|Λβ |) and L2

β = o(1/ρβ) = o(|Λβ |) by (1.22) and (1.29�1.30),and so the right-hand side of (B.7) equals [1+ o(1)] |Λβ |s/s! as β → ∞. Sin
e the binomialin (B.6) equals [1 + o(1)] (nβ)s/s! with nβ = ⌈ρβ |Λβ|⌉, we end up with (re
all (4.17))
µβ(Š(0)) ≥

Ž
(nβ−s)
β (0)

Z
(nβ)
β

(ρβ)−s [1 + o(1)], (B.8)or
Ž

(nβ−s)
β (0)

Z
(nβ)
β

≤ (ρβ)s µβ(Š(0)) [1 + o(1)]. (B.9)Sin
e Š(0) ⊂ S, this gives the desired upper bound.Lower bound: Return to (B.4). Among the s parti
les that are added to [BLβ ,Lβ
(0)]c, let

s1 
ount the number that intera
t with the nβ − s parti
les already present and s2 thenumber that intera
t among themselves, where s1 + s2 ≤ s. We 
an then estimate
µβ(Š(0))

≤ 1

Z
(nβ)
β

∑

σ̌∈Č(0)

(

nβ

s

)−1

e−βHβ(σ̌)
∑

s1,s2
0≤s1+s2≤s

(

s!

s1! s2!

)−1

×
∑

ζ⊂[BLβ,Lβ
(0)]c\supp[σ̌]

|ζ|=s

e−βH(ζ) 1{|ζ∩∂σ̌|=s1} 1{s2 intera
ting parti
les in ζ} 1{σ̌∨ζ∈Š(0)}

≤ [1 + o(1)]
Ž

(nβ−s)
β (0)

Z
(nβ)
β

(ρβ)−s

+
1

Z
(nβ)
β

∑

σ̌∈Č(0)

(

nβ

s

)−1

e−βHβ(σ̌)
∑

s1,s2
1≤s1+s2≤s

×
∑

ζ⊂[BLβ,Lβ
(0)]c\supp[σ̌]

|ζ|=s

e−βH(ζ) 1{|ζ∩∂σ̌|=s1} 1{s2 intera
ting parti
les in ζ} 1{σ̌∨ζ∈Š(0)},(B.10)where in the se
ond inequality we estimate the term with s1 = s2 = 0 by using the resultfor the upper bound. We will show that the other terms are exponentially small.32



For �xed σ̌, we may estimate the last sum in (B.10) as
∑

ζ⊂[BLβ,Lβ
(0)]c\supp[σ̌]

|ζ|=s

e−βH(ζ) 1{|ζ∩∂σ̌|=s1} 1{s2 intera
ting parti
les in ζ} 1{σ̌∨ζ∈Š(0)}

≤ |Λβ|s−s1−s2 (4nβ)s1
∑

σ∈S(s2)

e−βH(σ) 1{s2 intera
ting parti
les in σ}.

(B.11)Indeed, |Λβ|s−s1−s2 bounds the number of ways to pla
e s−s1−s2 non-intera
ting parti
les,and (4nβ)s1 the number of ways to pla
e s1 parti
les that are intera
ting with the nβ − sparti
les already present. Next, we write
∑

σ∈S(s2)

e−βH(σ) 1{s2 intera
ting parti
les in σ}

=

s2
∑

m=1

m
∑

j=1

∑

2≤k1,...,kj≤K
Pj

i=1
ki=m

∑

C=∪
j
i=1

Ci
|Ci|=ki ∀ i

e−β
Pj

i=1 H(Ci),
(B.12)whi
h is a 
luster expansion of the partition fun
tion (with non-intera
ting 
lusters Ci, allof whi
h have size ≤ K = ℓc(ℓc + 1) + 1). By a standard isoperimetri
 inequality we have

H(Ci) ≥ Hki
, with the latter denoting the energy of a droplet of ki = |Ci| parti
les that is
losest to a square or quasi-square. Hen
e
|Λβ|−s2

∑

σ∈S(s2)

e−βH(σ) 1{s2 intera
ting parti
les in σ}

≤ |Λβ |−s2

s2
∑

m=1

m
∑

j=1

∑

2≤k1,...,kj≤K
Pj

i=1
ki=s2

e−β
Pj

i=1 Hki

(

∑

C=∪
j
i=1

Ci
|Ci|=ki ∀ i

1

)

≤ C |Λβ|−s2

s2
∑

m=1

m
∑

j=1

∑

2≤k1,...,kj≤K
Pj

i=1
ki=s2

e−β
Pj

i=1 Hki |Λβ|j

≤ C

s2
∑

m=1

m
∑

j=1

∑

2≤k1,...,kj≤K
Pj

i=1
ki=s2

e−β
Pj

i=1[Hki
+(ki−1)β−1 log |Λβ |]

≤
s2
∑

m=1

m
∑

j=1

∑

2≤k1,...,kj≤K
Pj

i=1
ki=s2

e−β
Pj

i=1[Hki
+(ki−1)∆],

(B.13)
where in the last inequality we insert the bound β−1 log |Λβ | ≥ ∆, whi
h is a immediatefrom (1.22) and (1.35).Now, Hki

+ki∆ is the grand-
anoni
al energy of a square or quasi-square with ki parti
les.It was shown in the proof of Proposition 2.4.2 in Bovier, den Hollander and Nardi [7℄ thatthis energy is ≥ U
√

ki for 1 ≤ ki ≤ 4K, i.e., for a droplet twi
e the size of the proto-
riti
aldroplet. Sin
e 2U > ∆, we therefore have that Hki
+ (ki − 1)∆ > 0 when ki ≥ 4. Sin
e

∆ > U , H2 = −U and H3 = −2U , we have that also the terms with ki = 2, 3 are > 0.Consequently, there exist ǫ > 0 and a 
onstant C that is independent of β su
h that
|Λβ|−s2

∑

σ∈S(s2)

e−βH(σ) 1{s2 intera
ting parti
les in σ}e
−βH(σ) ≤ C e−β ǫ. (B.14)33



Combining (B.10�B.11) and (B.14), we see that the 
orre
tion term in (B.10) is
µβ(Š(0)) − [1 + o(1)]

Ž
(nβ−s)
β (0)

Z
(nβ)
β

(ρβ)−s

≤ C [1 + o(1)]
Ž

(nβ−s)
β (0)

Z
(nβ)
β

(ρβ)−s
∑

s1,s2
1≤s1+s2≤s

(eUβρβ)s1 e−βǫ.

(B.15)Sin
e ∆ > U , we have eUβρβ ≤ 1 and so the sum is o(1). Hen
e
Ž

(nβ−s)
β (0)

Z
(nβ)
β

≥ (ρβ)s µβ(Š(0)) [1 + o(1)]. (B.16)The 
laim now follows by using Lemma B.2 below.B.2. Typi
ality of holes.Lemma B.2. limβ→∞ µβ(Š(0))/µβ(S) = 1.Proof. Sin
e Š(0) ⊂ S, we have µβ(Š(0)) ≤ µβ(S). It therefore remains to prove the lowerbound. Write
µβ(S) = µβ(Š(0))

+
K
∑

m=1

∑

η∈X
(m)
β

∑

ζ∈X
(nβ−m)

β
η∨ζ∈S

e−β H(η∨ζ)

Z
(nβ)
β

1{supp[η]⊂BLβ,Lβ
(0)}1{supp[ζ]⊂[BLβ,Lβ

(0)]c}

≤ µβ(Š(0)) + γ1(β) + γ2(β), (B.17)where
γ1(β) =

K
∑

m=1

∑

η∈X
(m)
β

∑

ζ∈X
(n−m)
β

η∨ζ∈S

e−β [H(η)+H(ζ)]

Z
(nβ)
β

1{supp[η]⊂BLβ,Lβ
(0)}1{supp[ζ]⊂[BLβ,Lβ

(0)]c}(B.18)and γ2(β) is a term that arises from parti
les intera
ting a

ross the boundary of BLβ ,Lβ
(0).We will show that both γ1(β) and γ2(β) are negligible.Estimate, with the help of (B.9) (and re
alling (B.1�B.2)),

γ1(β) ≤
K
∑

m=1

Ž
(nβ−m)
β

Z
(nβ)
β

∑

η∈S(m)

e−βH(η) 1{supp[η]⊂BLβ,Lβ
(0)}

= [1 + o(1)]µβ(Š(0))
K
∑

m=1

(ρβ)m
∑

η∈S(m)

e−β H(η) 1{supp[η]⊂BLβ,Lβ
(0)}

= [1 + o(1)]µβ(Š(0))

K
∑

m=1

(ρβ)m
m
∑

j=1

∑

2≤k1,...,kj≤K
Pj

i=1
ki=m

∑

C=∪
j
i=1

Ci
|Ci|=ki ∀ i

e−β
Pj

i=1 H(Ci),

(B.19)
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where the last equality is a 
luster expansion as in (B.12). Using on
e more the isoperi-metri
 inequality, we get (re
all (1.29))
γ1(β) ≤ [1 + o(1)]µβ(Š(0))

K
∑

m=1

(ρβ)m
m
∑

j=1

∑

2≤k1,...,kj≤K
Pj

i=1
ki=m

e−β
Pj

i=1 H(ki)

(

∑

C=∪
j
i=1

Ci
|Ci|=ki ∀ i

1

)

≤ C µβ(Š(0))
∑

∈K
m=1 (ρβ)m

m
∑

j=1

(L2
β)j

∑

2≤k1,...,kj≤K
Pj

i=1
ki=m

e−β
Pj

i=1 Hki

= C µβ(Š(0))

K
∑

m=1

m
∑

j=1

∑

2≤k1,...,kj≤K
Pj

i=1
ki=m

e−β
Pj

i=1[Hki
+ki∆−(∆−δβ)]

≤ C ′ µβ(Š(0)) e−βǫ

(B.20)
for some ǫ > 0 and 
onstants C,C ′ < ∞ that are independent of β.Estimate, with the help of (B.9),

γ2(β) ≤
K
∑

m=1

∑

η∈S(m)

e−βH(η)
m
∑

k=1

eβkU 1{supp[η]⊂BLβ,Lβ
(0)}

Ž
(nβ−(m+k))
β

Z
(nβ)
β

≤
K
∑

m=1

∑

η∈S(m)

e−βH(η)
m
∑

k=1

eβkU 1{supp[η]⊂BLβ,Lβ
(0)} (ρβ)m+k µβ(Š(0)) [1 + o(1)]

≤ [1 + o(1)]µβ(Š(0))

K
∑

m=1

(ρβ)m
∑

η∈S(m)

e−βH(η)
m
∑

k=1

e−βk(∆−U)1{supp[η]⊂BLβ,Lβ
(0)},(B.21)and we 
an pro
eed as (B.19�B.20) to show that this term is negligible.B.3. Atypi
ality of 
riti
al droplets. The following lemma was used in Se
tion 4.1.1.Lemma B.3. limβ→∞ µβ(C̃\C+)/µβ(S) = 0.Proof. Similarly as in (B.17), we �rst write

µβ(C̃\C+) ≤ µβ(C̃)

= |Λβ | γ(β) + |Λβ |
∑

η∈X
(K)
β

∑

ζ∈X
(nβ−K)

β

η∨ζ∈C̃

e−β [H(η)+H(ζ)]

Z
(nβ)
β

1{supp[η]⊂BLβ,Lβ
(0)}1{supp[ζ]⊂[BLβ,Lβ

(0)]c}.(B.22)with γ(β) a negligible error term that arises from parti
les intera
ting a

ross the boundaryof BLβ ,Lβ
(0). We then pro
eed as in (B.18�B.20), obtaining (Γ = Γ∗ + K∆)r.h.s.(B.22) ≤ N |Λβ| e−βΓ∗

(ρβ)K µβ(Š(0)) [1 + o(1)]

= N |Λβ| e−βΓ µβ(S) [1 + o(1)], β → ∞,
(B.23)whi
h is o(µβ(S)) by (1.35).Appendix C. Appendix: Typi
ality of starting 
onfigurationsIn Se
tions C.1�C.2 we prove the 
laims made in the remarks below (1.9), respe
tively,(1.32). 35



C.1. Glauber.Proof. Split
S = SL ∪ (S \ SL) = SL ∪ U>L, (C.1)where U>L ⊂ S are those 
on�gurations σ for whi
h CB(σ) has at least one re
tangle thatis larger than QL(0). We have
CB(σ) =

⋃

x∈X(σ)

Rℓ1(x),ℓ2(x)(x), (C.2)where X(σ) is the set of lower-left 
orners of the re
tangles in CB(σ), whi
h in turn 
anbe split as
X(σ) = X>L(σ) ∪ X≤L(σ), (C.3)where X>L(σ) labels the re
tangles that are larger than QL(0) and X≤L(σ) labels the rest.Let σ|A denote the restri
tion of σ to the set A ⊂ Z

2. Then, for any x ∈ X(σ), we have
H(σ) = H

(

σ|Rℓ1(x),ℓ2(x)(x)

)

+ H
(

σ|Rc
ℓ2(x),ℓ2(x)

(x)

)

, (C.4)be
ause the re
tangles in CB(σ) are non-intera
ting. Sin
e for σ ∈ U>L there is at leastone re
tangle with lower-left 
orner in X>L(σ), we have
µβ(U>L) ≤

∑

x∈Λβ

∑

σ∈S

1{x∈X>L(σ)} µβ(σ)

=
∑

x∈Λβ

∑

σ∈S

1{x∈X>L(σ)}
1

Zβ
exp

{

− β
[

H
(

σ|Rℓ1(x),ℓ2(x)(x)

)

+ H
(

σ|Rc
ℓ1(x),ℓ2(x)

(x)

)

]}

≤ e−βΓL+1
∑

x∈Λβ

∑

σ∈S

1{x∈X>L(σ)}
1

Zβ
e
−βH

(

σ|Rc
ℓ1(x),ℓ2(x)

(x)

)

, (C.5)where ΓL+1 is the energy of QL+1(0). In the last step we use the fa
t that the bootstrapmap is downhill and that the energy of QL(0) is in
reasing with L. Sin
e the energy of asub
riti
al re
tangle is non-negative, we get
µβ(U>L) ≤ NL+1 e−βΓL+1 |Λβ|µβ(S) (C.6)with NL+1 
ounting the number of 
on�gurations with support in QL+1(0).On the other hand, by 
onsidering only those 
on�gurations in U>L that have a QL+1(0)droplet, we get

µβ(U>L) ≥ NL+1 e−βΓL+1 |Λβ |µ[QL+1(0)]
c

β (S), (C.7)where the last fa
tor is the Gibbs weight of the 
on�gurations in S with support outside
[QL+1(0)]

c. It easy to show that µ
[QL+1(0)]

c

β (S) = µβ(S)[1 + o(1)] as β → ∞ and so
µβ(U>L) ≥ NL+1 e−βΓL+1 |Λβ |µβ(S) [1 + o(1)], β → ∞. (C.8)Combining (C.6�C.7), we 
on
lude that limβ→∞ µβ(U>L)/µβ(S) = 0 if and only if

lim
β→∞

|Λβ| e−ΓL+1 = 0. (C.9)
36



C.2. Kawasaki.Proof. Split
S = SL ∪ (S \ SL) = SL ∪ U>L, (C.10)where U>L ⊂ S are those 
on�gurations σ for whi
h there exists an x su
h that |supp[σ]∩

BLβ ,Lβ
(x)| > L. Then

µβ(U>L) ≤
∑

x∈Λβ

∑

σ∈S

K
∑

m=L+1

µβ(σ)1{|supp[σ]∩BLβ,Lβ
(x)|=m} = |Λβ| [ϕ(β) + γ(β)], (C.11)where

ϕ(β) =

K
∑

m=L+1

∑

η∈X
(m)
β

∑

ζ∈X
(nβ−m)

β
η∨ζ∈S

e−β[H(η)+H(ζ)]

Z
(nβ)
β

1{supp[η]⊂BLβ,Lβ
(0)} 1{supp[ζ]⊂[BLβ,Lβ

(0)]c}(C.12)and γ(β) is an error term arising from parti
les intera
ting a

ross the boundary of
BLβ ,Lβ

(0). By the same argument as in (B.21), this term is negligible. Moreover,
ϕ(β) ≤

K
∑

m=L+1

Ž
(nβ−m)
β

Z
(nβ)
β

(

∑

η∈S(m)

e−β H(η) 1{supp[η]⊂BLβ,Lβ
(0)}

)

≤ [1 + o(1)]µβ(S)

K
∑

m=L+1

(ρβ)m
(

∑

η∈S(m)

e−βH(η) 1{supp[η]⊂BLβ,Lβ
(0)}

)

,

(C.13)where in the last inequality we use Lemmas B.1�B.2. Now pro
eed as in (B.19�B.20), viathe 
luster expansion, to get
ϕ(β) ≤ 1 + o(1)]C µ(S)

K
∑

m=L+1

m
∑

j=1

∑

2≤k1,...,kj≤K
Pj

i=1
ki=m

e−β[Hki
+ki∆−(∆−δβ)]

≤ [1 + o(1)]C µ(S) e−β[ΓL+1−(∆−δβ)],

(C.14)where Hk is the energy of a droplet with k parti
les that is 
losest to a square or quasi-square, ΓL+1 = HL+1+(L+1)∆, and the se
ond inequality uses the isoperimetri
 inequalitytogether with the fa
t that Hk + k∆ is in
reasing in k for sub
riti
al droplets.On the other hand, by 
onsidering only those 
on�gurations in U>L that have a dropletwith L + 1 pati
les, we get
ϕ(β) ≥ [1 + o(1)]C µ(S) e−β[ΓL+1−(∆−δβ)]. (C.15)Combining (C.11) and (C.14�C.15), we 
on
lude that limβ→∞ µβ(U>L)/µβ(S) = 0 if andonly if

lim
β→∞

|Λβ| e−β (ΓL+1−(∆−δβ)) = 0. (C.16)Appendix D. Appendix: The 
riti
al droplet is the thresholdIn this appendix we show that our estimates on 
apa
ities imply that the average proba-bility under the Gibbs measure µβ of destroying a super
riti
al droplet and returning toa 
on�guration in SL is exponentially small in β. We will give the proof for Kawasakidynami
s, the proof for Glauber dynami
s being simpler.37



Pi
k M ≥ ℓc. Re
all from (2.7) that eDM ,SL
(σ) = cβ(σ)Pσ (τSL

< τDM
) for σ ∈ DM . Hen
esumming over σ ∈ ∂DM , the internal boundary of DM , we get using (2.8) that

∑

σ∈∂DM
µβ(σ)cβ(σ)Pσ (τSL

< τDM
)

∑

σ∈∂DM
µβ(σ)cβ(σ)

=
CAP(SL,DM )

∑

σ∈∂DM
µβ(σ)cβ(σ)

. (D.1)Clearly, the left-hand side of (D.1) is the es
ape probability to SL from ∂DM averaged withrespe
t to the 
anoni
al Gibbs measure µβ 
onditioned on ∂DM weighted by the outgoingrate cβ . To show that this quantity is small, it su�
es to show that the denominator islarge 
ompared to the numerator.By Lemma 4.2,CAP(SL,DM ) ≤ CAP(SL, (Sc \ C̃) ∪ C+) = N |Λβ|
4π

∆β
e−βΓ µβ(S)[1 + o(1)]. (D.2)On the other hand, note that ∂DM 
ontains all 
on�gurations σ for whi
h there is an

M × M droplet somewhere in Λβ, all Lβ-boxes not 
ontaining this droplet 
arry at most
K parti
les, and there is a free parti
le somewhere in Λβ . The last 
ondition ensures that
cβ(σ) ≥ 1. Therefore we 
an use Lemma B.1 to estimate
∑

σ∈DM

µβ(σ)cβ(σ) ≥ |Λβ| e−βH
M2

Ž
(nβ−M2)
β

Z
(nβ)
β

= |Λβ | e−βH
M2 (ρβ)M

2
µβ(S) [1 + o(1)], (D.3)where HM2 is the energy of an M × M droplet. Combining (D.2�D.3) we �nd that theleft-hand side of (D.1) is bounded from above by

(

N
4π

∆β

)

exp [−βΓ]

exp [−β(HM2 + ∆M2)]
[1 + o(1)], (D.4)whi
h is exponentially small in β be
ause Γ > HM2 + ∆M2 for all M ≥ ℓc.A
knowledgment. The authors thank Alessandra Bian
hi, Alex Gaudillière, Dima Io�e,Fran
es
a Nardi, Enzo Olivieri and Elisabetta S
oppola for ongoing dis
ussions on meta-stability and for sharing their work in progress. CS thanks Martin Slowik for stimulatingex
hange. Referen
es[1℄ G. Ben Arous and R. Cerf, Metastability of the three-dimensional Ising model on a torus at very lowtemperature, Ele
tron. J. Probab. 1 (1996) Resear
h paper 10.[2℄ K.A. Berman and M.H. Konsowa, Random paths and 
uts, ele
tri
al networks, and reversible Markov
hains, SIAM J. Dis
rete Math. 3 (1990) 311�319.[3℄ A. Bian
hi, A. Bovier, and D. Io�e, Sharp asymptoti
s for metastability in the random �eld Curie-Weiss model, preprint June 2008.[4℄ A. Bovier, Metastability: a potential theoreti
 approa
h, Pro
eedings of ICM 2006, EMS PublishingHouse, 2006, pp. 499�518.[5℄ A. Bovier, Metastability, in: Pro
eedings of the 2006 Prague Summer S
hool on Mathemati
al Sta-tisti
al Me
hani
s (ed. R. Kote
ký), to be published by Springer, 2008.[6℄ A. Bovier, M. E
kho�, V. Gayrard, and M. Klein, Metastability and low lying spe
tra in reversibleMarkov 
hains, Commun. Math. Phys. 228 (2002) 219�255.[7℄ A. Bovier, F. den Hollander, and F.R. Nardi, Sharp asymptoti
s for Kawasaki dynami
s on a �nitebox with open boundary, Probab. Theory Relat. Fields 135 (2006) 265�310.[8℄ A. Bovier and F. Manzo, Metastability in Glauber dynami
s in the low-temperature limit: beyondexponential asymptoti
s, J. Stat. Phys. 107 (2002) 757�779.[9℄ R. Cerf and F. Manzo, private 
ommuni
ation.[10℄ P. Dehghanpour and R.H. S
honmann, Metropolis dynami
s relaxation via nu
leation and growth,Commun. Math. Phys. 188 (1997) 89�119.[11℄ P. Dehghanpour and R.H. S
honmann, A nu
leation-and-growth model, Probab. Theory Relat. Fields107 (1997) 123�135. 38



[12℄ A. Gaudillière, F. den Hollander, F.R. Nardi, E. Olivieri, and E. S
oppola, Ideal gas approximation fora two-dimensional rari�ed gas under Kawasaki dynami
s, EURANDOM Report 2007�043, to appearin Sto
h. Pro
. Appl.[13℄ A. Gaudillière, F. den Hollander, F.R. Nardi, E. Olivieri, and E. S
oppola, Droplet dynami
s in atwo-dimensional rari�ed gas under Kawasaki dynami
s, work in progress.[14℄ A. Gaudillière, F. den Hollander, F.R. Nardi, E. Olivieri, and E. S
oppola, Homogeneous nu
leationfor two-dimensional Kawasaki dynami
s, work in progress.[15℄ F. den Hollander, Metastability under sto
hasti
 dynami
s, Sto
h. Pro
. Appl. 114 (2004) 1�26.[16℄ F. den Hollander, Three le
tures on metastability under sto
hasti
 dynami
s , in: Pro
eedings of the2006 Prague Summer S
hool on Mathemati
al Statisti
al Me
hani
s (ed. R. Kote
ký), to be publishedby Springer, 2008.[17℄ F. den Hollander, F.R. Nardi, E. Olivieri, and E. S
oppola, Droplet growth for three-dimensionalKawasaki dynami
s, Probab. Theory Relat. Fields 125 (2003) 153�194.[18℄ F. den Hollander, E. Olivieri, and E. S
oppola, Metastability and nu
leation for 
onservative dynami
s,J. Math. Phys. 41 (2000) 1424�1498.[19℄ R. Kote
ký and E. Olivieri, Droplet dynami
s for asymmetri
 Ising model, J. Stat. Phys. 70 (1993)1121�1148.[20℄ G.F. Lawler, Interse
tions of Random Walks, Birkhäuser, Boston, 1991.[21℄ G.F. Lawler, O. S
hramm and W. Werner, Conformal invarian
e of planar loop-erased random walkand uniform spanning trees, Ann. Probab. 32 (2004) 939�995.[22℄ E.J. Neves and R.H. S
honmann, Criti
al droplets and metastability for Glauber dynami
s at verylow temperature, Commun. Math. Phys. 137 (1991) 209�230.[23℄ E. Olivieri and M.E. Vares, Large Deviations and Metastability, Cambridge University Press, Cam-bridge, 2004.[24℄ R.H. S
honmann and S.B. Shlosman, Wul� droplets and the metastable relaxation of kineti
 Isingmodels, Commun. Math. Phys. 194 (1998) 389�462.A
knowledgment. The authors thank Alessandra Bian
hi, Alex Gaudillière, Dima Io�e, Fran
es
aNardi, Enzo Olivieri and Elisabetta S
oppola for ongoing dis
ussions on metastability and for sharingtheir work in progress. CS thanks Martin Slowik for stimulating ex
hange.

39


