20 research outputs found

    Uncovering the overlapping community structure of complex networks in nature and society

    Full text link
    Many complex systems in nature and society can be described in terms of networks capturing the intricate web of connections among the units they are made of. A key question is how to interpret the global organization of such networks as the coexistence of their structural subunits (communities) associated with more highly interconnected parts. Identifying these a priori unknown building blocks (such as functionally related proteins, industrial sectors and groups of people) is crucial to the understanding of the structural and functional properties of networks. The existing deterministic methods used for large networks find separated communities, whereas most of the actual networks are made of highly overlapping cohesive groups of nodes. Here we introduce an approach to analysing the main statistical features of the interwoven sets of overlapping communities that makes a step towards uncovering the modular structure of complex systems. After defining a set of new characteristic quantities for the statistics of communities, we apply an efficient technique for exploring overlapping communities on a large scale. We find that overlaps are significant, and the distributions we introduce reveal universal features of networks. Our studies of collaboration, word-association and protein interaction graphs show that the web of communities has non-trivial correlations and specific scaling properties.Comment: The free academic research software, CFinder, used for the publication is available at the website of the publication: http://angel.elte.hu/clusterin

    mRNA Translation: Fungal Variations on a Eukaryotic Theme

    No full text
    The accurate transfer of information from a nucleotide-based code to a protein-based one is at the heart of all life processes. The actual information transfer occurs during protein synthesis or translation, and is catalysed by ribosomes, supported by a large host of additional protein activities—the translation factors. This chapter reviews how the different eukaryotic initiation, elongation and termination factors assist the ribosome in establishing appropriate contacts with mRNAs during translation initiation, decode the genetic code during translation elongation, and finally release the newly made polypeptide and reuse the ribosomes during the termination and recycling phases
    corecore