25 research outputs found

    Draft genome sequence and overview of the purple non sulfur bacterium Rhodopseudomonas palustris 42OL

    Get PDF
    Rhodopseudomonas palustris strain 42OL was isolated in 1973 from a sugar refinery waste treatment pond. The strain has been prevalently used for hydrogen production processes using a wide variety of waste-derived substrates, and cultured both indoors and outdoors, either freely suspended or immobilized. R. palustris 42OL was suitable for many other applications and capable of growing in very different culturing conditions, revealing a wide metabolic versatility. The analysis of the genome sequence allowed to identify the metabolic pathways for hydrogen and poly-β-hydroxy-butyrate production, and confirmed the ability of using a wide range of organic acids as substrates

    Role and regulation of ACC deaminase gene in Sinorhizobium meliloti: is it a symbiotic, rhizospheric or endophytic gene?

    Get PDF
    Plant-associated bacteria exhibit a number of different strategies and specific genes allow bacteria to communicate and metabolically interact with plant tissues. Among the genes found in the genomes of plant-associated bacteria, the gene encoding the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase (acdS) is one of the most diffused. This gene is supposed to be involved in the cleaving of plant-produced ACC, the precursor of the plant stress-hormone ethylene toning down the plant response to infection. However, few reports are present on the actual role in rhizobia, one of the most investigated groups of plant-associated bacteria. In particular, still unclear is the origin and the role of acdS in symbiotic competitiveness and on the selective benefit it may confer to plant symbiotic rhizobia. Here we present a phylogenetic and functional analysis of acdS orthologs in the rhizobium model-species Sinorhizobium meliloti. Results showed that acdS orthologs present in S. meliloti pangenome have polyphyletic origin and likely spread through horizontal gene transfer, mediated by mobile genetic elements. When acdS ortholog from AK83 strain was cloned and assayed in S. meliloti 1021 (lacking acdS), no modulation of plant ethylene levels was detected, as well as no increase in fitness for nodule occupancy was found in the acdS-derivative strain compared to the parental one. Surprisingly, AcdS was shown to confer the ability to utilize formamide and some dipeptides as sole nitrogen source. Finally, acdS was shown to be negatively regulated by a putative leucine-responsive regulator (LrpL) located upstream to acdS sequence (acdR). acdS expression was induced by root exudates of both legumes and non-leguminous plants. We conclude that acdS in S. meliloti is not directly related to symbiotic interaction, but it could likely be involved in the rhizospheric colonization or in the endophytic behavior

    Functional Tic-like Behaviors: From the COVID-19 Pandemic to the Post-Pandemic Era

    Get PDF
    During the COVID-19 pandemic, there have been multiple reports about an unforeseen surge in adolescents and young adults exhibiting sudden onset functional tic-like behaviors. This phenomenon has been mainly associated with the female gender and occasionally after exposure to social media content featuring similar patterns of functional tic-like behaviors. A significant portion of these individuals have been directed to specialist clinics for movement disorders with initial misdiagnoses of late-onset refractory Tourette syndrome. Distinguishing between rapid onset functional tic-like behaviors and neurodevelopmental tics as part of Tourette syndrome can be challenging; however, the differential diagnosis is facilitated by focusing on specific clinical and demographic factors, which we have explored in a systematic literature review. Compared to neurodevelopmental tics, functional tic-like behaviors typically present with a more abrupt and intense manifestation of symptoms, onset at a later age, higher prevalence among females, inability to suppress tics, coexisting anxiety and depression, and sometimes a history of exposure to social media content portraying tic-like behaviors of a similar nature. This novel manifestation of a functional neurological disorder may thus be viewed as an emerging neuropsychiatric condition potentially triggered/exacerbated by the psychosocial repercussions of the COVID-19 crisis

    Molecular and Microbiological Insights on the Enrichment Procedures for the Isolation of Petroleum Degrading Bacteria and Fungi

    Get PDF
    Autochthonous bioaugmentation, by exploiting the indigenous microorganisms of the contaminated environment to be treated, can represent a successful bioremediation strategy. In this perspective, we have assessed by molecular methods the evolution of bacterial and fungal communities during the selective enrichment on different pollutants of a soil strongly polluted by mixtures of aliphatic and polycyclic hydrocarbons. Three consecutive enrichments were carried out on soil samples from different soil depths (0–1, 1–2, 2–3 m), and analyzed at each step by means of high-throughput sequencing of bacterial and fungal amplicons biomarkers. At the end of the enrichments, bacterial and fungal contaminants degrading strains were isolated and identified in order to (i) compare the composition of enriched communities by culture-dependent and culture-independent molecular methods and to (ii) obtain a collection of hydrocarbon degrading microorganisms potentially exploitable for soil bioremediation. Molecular results highlighted that for both bacteria and fungi the pollutant had a partial shaping effect on the enriched communities, with paraffin creating distinct enriched bacterial community from oil, and polycyclic aromatic hydrocarbons generally overlapping; interestingly neither the soil depth or the enrichment step had significant effects on the composition of the final enriched communities. Molecular analyses well-agreed with culture-dependent analyses in terms of most abundant microbial genera. A total of 95 bacterial and 94 fungal strains were isolated after selective enrichment procedure on different pollutants. On the whole, isolated bacteria where manly ascribed to Pseudomonas genus followed by Sphingobacterium, Bacillus, Stenothrophomonas, Achromobacter, and Serratia. As for fungi, Fusarium was the most abundant genus followed by Trichoderma and Aspergillus. The species comprising more isolates, such as Pseudomonas putida, Achromobacter xylosoxidans and Ochromobactrum anthropi for bacteria, Fusarium oxysporum and Fusarium solani for fungi, were also the dominant OTUs assessed in Illumina

    Permanent draft genome sequences of the symbiotic nitrogen fixing Ensifer meliloti strains BO21CC and AK58

    Get PDF
    Ensifer (syn. Sinorhizobium) meliloti is an important symbiotic bacterial species that fixes nitrogen. Strains BO21CC and AK58 were previously investigated for their substrate utilization and their plant-growth promoting abilities showing interesting features. Here, we describe the complete genome sequence and annotation of these strains. BO21CC and AK58 genomes are 6,985,065 and 6,974,333 bp long with 6,746 and 6,992 genes predicted, respectively. © retained by original authors

    Modulation of microbial consortia enriched from different polluted environments during petroleum biodegradation

    No full text
    Environmental microbial communities are key players in the bioremediation of hydrocarbon pollutants. Here we assessed changes in bacterial abundance and diversity during the degradation of Tunisian Zarzatine oil by four indigenous bacterial consortia enriched from a petroleum station soil, a refinery reservoir soil, a harbor sediment and seawater. The four consortia were found to efficiently degrade up to 92.0% of total petroleum hydrocarbons after 2 months of incubation. Illumina 16S rRNA gene sequencing revealed that the consortia enriched from soil and sediments were dominated by species belonging to Pseudomonas and Acinetobacter genera, while in the seawater-derived consortia Dietzia, Fusobacterium and Mycoplana emerged as dominant genera. We identified a number of species whose relative abundances bloomed from small to high percentages: Dietzia daqingensis in the seawater microcosms, and three OTUs classified as Acinetobacter venetianus in all two soils and sediment derived microcosms. Functional analyses on degrading genes were conducted by comparing PCR results of the degrading genes alkB, ndoB, cat23, xylA and nidA1 with inferences obtained by PICRUSt analysis of 16S amplicon data: the two data sets were partly in agreement and suggest a relationship between the catabolic genes detected and the rate of biodegradation obtained. The work provides detailed insights about the modulation of bacterial communities involved in petroleum biodegradation and can provide useful information for in situ bioremediation of oil-related pollution

    Evolution and functional role of the putative nickel/H+ antiporter Sma1641 (nreB) in the symbiotic nitrogen fixer Sinorhizobium meliloti Rm1021

    No full text
    Evolution and functional role of the putative nickel/H+ antiporter Sma1641 (nreB) in the symbiotic nitrogen fixer Sinorhizobium meliloti Rm1021. 10. European Nitrogen Fixation Conferenc
    corecore