17 research outputs found

    Lower volume throughout the taper and higher intensity in the last interval session prior to a 1,500 m time trial improves performance

    Get PDF
    Eight highly-trained middle-distance runners (1,500 m personal best 4:01.4 ± 0:09.2 min) completed two 7-day tapers, separated by at least 3 weeks of regular training: (i) prescribed using prediction models from elite middle-distance runners, where continuous running volume was reduced by 30% and interval intensity was equal to 1,500 m race pace (RP); and (ii) continuous running volume was reduced by 60% and intensity of the final interval session was completed at 110% of 1,500 m race pace (HI). Performance was assessed using 1,500 m time trials on an indoor 200 m track one day before, and one day after each taper. Performance time was improved after HI by 5.2 ± 3.7 s (mean ± 90% confidence limits, p = 0.03) and by 3.2 ± 3.8 s after RP (p = 0.15). The first and second 300-m segments of the 1,500 m time trial were faster post-taper in RP (p = 0.012 and p = 0.017, respectively) and HI (both p = 0.012). Running faster than race pace late in a low-volume taper is recommended to improve 1,500 m track performance. A positive pacing strategy is adopted after tapering, although care should be taken to avoid an over-fast start. Novel Findings: A large reduction in volume during tapering and an increase in final interval session intensity improves running performance. Athletes adopt a negative pacing strategy before tapering and a positive-pacing strategy after tapering

    The effects of an increase in intensity during tapering on 1,500m running performance

    Get PDF
    We examined the effect of completing the final interval training session during a taper at either: i) race pace; or ii) faster than race pace, on 1,500 m running performance and neuromuscular performance. Ten trained runners (age 21.7 ± 3.0 years, height 182.9 ± 7.0 cm, body mass 73.4 ± 6.8 kg, personal best 1,500 m time 4:17.5 ± 0:26.9 min) completed two conditions, consisting of 7-d of regular training and a 7-d taper, separated by three weeks of training. In one condition, the taper was prescribed using prediction models based on the practices of elite British middle-distance runners, with the intensity of the final interval session being equal to 1,500 m race pace (RP). The taper was repeated in the HI condition, except the final interval session was completed at 115% of 1,500 m race pace. A 1,500 m treadmill time trial, measures of maximum voluntary isometric strength (MVC) and rate of force development (RFD) were completed before and after regular training and tapering. Performance was most likely improved after RP (mean ± 90% confidence limits, 10.1 ± 1.6 s), and possibly beneficial after HI (4.2 ± 12.0 s). Both MVC force (p = 0.002) and RFD (p = 0.02) were improved after tapering, without differences between conditions. A race-pace taper based on the practices of elite middle-distance runners is recommended to improve performance in young, sub-elite runners. The effect of this strategy with an increase in interval intensity is highly variable and should be implemented with caution

    Impact of Flavonoids on Cellular and Molecular Mechanisms Underlying Age-Related Cognitive Decline and Neurodegeneration

    Get PDF
    Purpose of Review This review summarises the most recent evidence regarding the effects of dietary flavonoids on age-related cognitive decline and neurodegenerative diseases. Recent Findings Recent evidence indicates that plant-derived flavonoids may exert powerful actions on mammalian cognition and protect against the development of age-related cognitive decline and pathological neurodegeneration. The neuroprotective effects of flavonoids have been suggested to be due to interactions with the cellular and molecular architecture of brain regions responsible for memory. Summary Mechanisms for the beneficial effects of flavonoids on age-related cognitive decline and dementia are discussed, including modulating signalling pathways critical in controlling synaptic plasticity, reducing neuroinflammation, promoting vascular effects capable of stimulating new nerve cell growth in the hippocampus, bidirectional interactions with gut microbiota and attenuating the extracellular accumulation of pathological proteins. These processes are known to be important in maintaining optimal neuronal function and preventing age-related cognitive decline and neurodegeneration

    Accelerated Partial Breast Irradiation (APBI): A review of available techniques

    Get PDF
    Breast conservation therapy (BCT) is the procedure of choice for the management of the early stage breast cancer. However, its utilization has not been maximized because of logistics issues associated with the protracted treatment involved with the radiation treatment. Accelerated Partial Breast Irradiation (APBI) is an approach that treats only the lumpectomy bed plus a 1-2 cm margin, rather than the whole breast. Hence because of the small volume of irradiation a higher dose can be delivered in a shorter period of time. There has been growing interest for APBI and various approaches have been developed under phase I-III clinical studies; these include multicatheter interstitial brachytherapy, balloon catheter brachytherapy, conformal external beam radiation therapy and intra-operative radiation therapy (IORT). Balloon-based brachytherapy approaches include Mammosite, Axxent electronic brachytherapy and Contura, Hybrid brachytherapy devices include SAVI and ClearPath. This paper reviews the different techniques, identifying the weaknesses and strength of each approach and proposes a direction for future research and development. It is evident that APBI will play a role in the management of a selected group of early breast cancer. However, the relative role of the different techniques is yet to be clearly identified
    corecore