105 research outputs found

    Pharmacokinetics of Quinacrine Efflux from Mouse Brain via the P-glycoprotein Efflux Transporter

    Get PDF
    The lipophilic cationic compound quinacrine has been used as an antimalarial drug for over 75 years but its pharmacokinetic profile is limited. Here, we report on the pharmacokinetic properties of quinacrine in mice. Following an oral dose of 40 mg/kg/day for 30 days, quinacrine concentration in the brain of wild-type mice was maintained at a concentration of ∼1 µM. As a substrate of the P-glycoprotein (P-gp) efflux transporter, quinacrine is actively exported from the brain, preventing its accumulation to levels that may show efficacy in some disease models. In the brains of P-gp–deficient Mdr10/0 mice, we found quinacrine reached concentrations of ∼80 µM without any signs of acute toxicity. Additionally, we examined the distribution and metabolism of quinacrine in the wild-type and Mdr10/0 brains. In wild-type mice, the co-administration of cyclosporin A, a known P-gp inhibitor, resulted in a 6-fold increase in the accumulation of quinacrine in the brain. Our findings argue that the inhibition of the P-gp efflux transporter should improve the poor pharmacokinetic properties of quinacrine in the CNS

    Dysregulation of the mTOR Pathway Mediates Impairment of Synaptic Plasticity in a Mouse Model of Alzheimer's Disease

    Get PDF
    Background: The mammalian target of rapamycin (mTOR) is an evolutionarily conserved Ser/Thr protein kinase that plays a pivotal role in multiple fundamental biological processes, including synaptic plasticity. We explored the relationship between the mTOR pathway and b-amyloid (Ab)-induced synaptic dysfunction, which is considered to be critical in the pathogenesis of Alzheimer’s disease (AD). Methodology/Principal Findings: We provide evidence that inhibition of mTOR signaling correlates with impairment in synaptic plasticity in hippocampal slices from an AD mouse model and in wild-type slices exposed to exogenous Ab1-42. Importantly, by up-regulating mTOR signaling, glycogen synthase kinase 3 (GSK3) inhibitors rescued LTP in the AD mouse model, and genetic deletion of FK506-binding protein 12 (FKBP12) prevented Ab-induced impairment in long-term potentiation (LTP). In addition, confocal microscopy demonstrated co-localization of intraneuronal Ab42 with mTOR. Conclusions/Significance: These data support the notion that the mTOR pathway modulates Ab-related synaptic dysfunctio

    Regulation of Amyloid Precursor Protein Processing by the Beclin 1 Complex

    Get PDF
    Autophagy is an intracellular degradation pathway that functions in protein and organelle turnover in response to starvation and cellular stress. Autophagy is initiated by the formation of a complex containing Beclin 1 (BECN1) and its binding partner Phosphoinositide-3-kinase, class 3 (PIK3C3). Recently, BECN1 deficiency was shown to enhance the pathology of a mouse model of Alzheimer Disease (AD). However, the mechanism by which BECN1 or autophagy mediate these effects are unknown. Here, we report that the levels of Amyloid precursor protein (APP) and its metabolites can be reduced through autophagy activation, indicating that they are a substrate for autophagy. Furthermore, we find that knockdown of Becn1 in cell culture increases the levels of APP and its metabolites. Accumulation of APP and APP C-terminal fragments (APP-CTF) are accompanied by impaired autophagosomal clearance. Pharmacological inhibition of autophagosomal-lysosomal degradation causes a comparable accumulation of APP and APP-metabolites in autophagosomes. Becn1 reduction in cell culture leads to lower levels of its binding partner Pik3c3 and increased presence of Microtubule-associated protein 1, light chain 3 (LC3). Overexpression of Becn1, on the other hand, reduces cellular APP levels. In line with these observations, we detected less BECN1 and PIK3C3 but more LC3 protein in brains of AD patients. We conclude that BECN1 regulates APP processing and turnover. BECN1 is involved in autophagy initiation and autophagosome clearance. Accordingly, BECN1 deficiency disrupts cellular autophagy and autophagosomal-lysosomal degradation and alters APP metabolism. Together, our findings suggest that autophagy and the BECN1-PIK3C3 complex regulate APP processing and play an important role in AD pathology

    Inhibition of RNA Recruitment and Replication of an RNA Virus by Acridine Derivatives with Known Anti-Prion Activities

    Get PDF
    Small molecule inhibitors of RNA virus replication are potent antiviral drugs and useful to dissect selected steps in the replication process. To identify antiviral compounds against Tomato bushy stunt virus (TBSV), a model positive stranded RNA virus, we tested acridine derivatives, such as chlorpromazine (CPZ) and quinacrine (QC), which are active against prion-based diseases.Here, we report that CPZ and QC compounds inhibited TBSV RNA accumulation in plants and in protoplasts. In vitro assays revealed that the inhibitory effects of these compounds were manifested at different steps of TBSV replication. QC was shown to have an effect on multiple steps, including: (i) inhibition of the selective binding of the p33 replication protein to the viral RNA template, which is required for recruitment of viral RNA for replication; (ii) reduction of minus-strand synthesis by the tombusvirus replicase; and (iii) inhibition of translation of the uncapped TBSV genomic RNA. In contrast, CPZ was shown to inhibit the in vitro assembly of the TBSV replicase, likely due to binding of CPZ to intracellular membranes, which are important for RNA virus replication.Since we found that CPZ was also an effective inhibitor of other plant viruses, including Tobacco mosaic virus and Turnip crinkle virus, it seems likely that CPZ has a broad range of antiviral activity. Thus, these inhibitors constitute effective tools to study similarities in replication strategies of various RNA viruses

    Crosstalk Between Macroautophagy and Chaperone-Mediated Autophagy: Implications for the Treatment of Neurological Diseases

    Get PDF

    Protein Homeostasis, Aging and Alzheimer’s Disease

    Full text link

    REPRODUCTIVE EFFICIENCY IN AGED FEMALE RABBITS GIVEN SUPPLEMENTAL PROGESTERONE AND OESTRADIOL

    Get PDF
    The reproductive efficiency of twenty-eight aged does, 49 to 72 months old, was compared with that of eighteen young does, 6 to 13 months old. Fertilization rate and development in vitro of fertilized ova from rabbits induced to superovulate were not influenced by the doe\u27s age. Ovulation rates following natural mating were only slightly reduced with age. However, the number of embryos per doe was much greater in young than in old does at 12 and 24 days post coitum. All young does had viable embryos, whereas the percentages of aged does with detectable implantation sites and viable embryos were 80 and 40, respectively, at 12 days post coitum, and 77 and 44 at 24 days post coitum. Aged female rabbits were given supplemental exogenous progesterone and/or oestradiol benzoate in an effort to increase reproductive efficiency. Progesterone treatment had no effect on the total number of young kindled but did prolong the gestation period, increase the birth weight and result in fewer live young kindled/doe. When administered on Days 3 to 29 of pregnancy, 4 μg/day of oestradiol alone or in combination with 2 and 4 mg progesterone completely blocked pregnancy in all does. Starting on Day 5 of pregnancy, oestradiol levels of 1 μg/day, with or without progesterone, had no effect. Chromosomal analysis of fourteen embryos revealed eleven normal females (44,XX), one normal male (44,XY), one abnormal embryo (45,XX) with an extra acrocentric chromosome and one embryo with a modal number of forty-two chromosomes in 35% of the metaphases. Since most of the embryonic wastage in aged rabbits occurred during the first 12 days post coitum, chromosome studies of embryos younger than 12 days post coitum are indicated. Most of the embryonic wastage could not be attributed to ovulation rate, fertilization rate, ovum potential, CL function, circulating levels of progesterone and oestrogen, or to chromosomal anomalies of the fetuses. It was concluded that uterine factors apparently limit reproductive performance in aged rabbits
    • …
    corecore