1,476 research outputs found

    A course space construction based on local Dirichlet-to-Neumann maps

    Get PDF
    Coarse-grid correction is a key ingredient of scalable domain decomposition methods. In this work we construct coarse-grid space using the low-frequency modes of the subdomain Dirichlet-to-Neumann maps and apply the obtained two-level preconditioners to the extended or the original linear system arising from an overlapping domain decomposition. Our method is suitable for parallel implementation, and its efficiency is demonstrated by numerical examples on problems with large heterogeneities for both manual and automatic partitionings

    Minimising Bloat Through Development of White Clover (\u3cem\u3eT. Repens\u3c/em\u3e) with High Levels of Condensed Tannins

    Get PDF
    White clover constitutes a low percentage of the overall sward content in Irish pastureland despite EU directives limiting the use of nitrogenous fertilizers. This is mainly due to the tendency of large amounts of white clover to cause bloat. Bloat is a potentially fatal build up of proteinaceous foam in the guts of ruminants. Some lesser cultivated legumes such as Lotus species contain condensed tannins (CT) that decrease the incidence of bloated animals. The project’s objective is to reduce the risk of bloat by generating white clover cultivars with high CT content. We are investigating whether expression of the ANTHOCYANIN REDUCTASE gene (BAN) in transgenic white clover and Medicago truncatula (model) plants leads to increased CT levels (Xie et al., 2003)

    The EMT-activator ZEB1 is unrelated to platinum drug resistance in ovarian cancer but is predictive of survival

    Get PDF
    The IGROVCDDP cisplatin-resistant ovarian cancer cell line is an unusual model, as it is also cross-resistant to paclitaxel. IGROVCDDP, therefore, models the resistance phenotype of serous ovarian cancer patients who have failed frontline platinum/taxane chemotherapy. IGROVCDDP has also undergone epithelial-mesenchymal transition (EMT). We aim to determine if alterations in EMT-related genes are related to or independent from the drug-resistance phenotypes. EMT gene and protein markers, invasion, motility and morphology were investigated in IGROVCDDP and its parent drug-sensitive cell line IGROV-1. ZEB1 was investigated by qPCR, Western blotting and siRNA knockdown. ZEB1 was also investigated in publicly available ovarian cancer gene-expression datasets. IGROVCDDP cells have decreased protein levels of epithelial marker E-cadherin (6.18-fold, p = 1.58e−04) and higher levels of mesenchymal markers vimentin (2.47-fold, p = 4.43e−03), N-cadherin (4.35-fold, p = 4.76e−03) and ZEB1 (3.43-fold, p = 0.04). IGROVCDDP have a spindle-like morphology consistent with EMT. Knockdown of ZEB1 in IGROVCDDP does not lead to cisplatin sensitivity but shows a reversal of EMT-gene signalling and an increase in cell circularity. High ZEB1 gene expression (HR = 1.31, n = 2051, p = 1.31e−05) is a marker of poor overall survival in high-grade serous ovarian-cancer patients. In contrast, ZEB1 is not predictive of overall survival in high-grade serous ovarian-cancer patients known to be treated with platinum chemotherapy. The increased expression of ZEB1 in IGROVCDDP appears to be independent of the drug-resistance phenotypes. ZEB1 has the potential to be used as biomarker of overall prognosis in ovarian-cancer patients but not of platinum/taxane chemoresistance

    Study of the 12C+12C fusion reactions near the Gamow energy

    Get PDF
    The fusion reactions 12C(12C,a)20Ne and 12C(12C,p)23Na have been studied from E = 2.10 to 4.75 MeV by gamma-ray spectroscopy using a C target with ultra-low hydrogen contamination. The deduced astrophysical S(E)* factor exhibits new resonances at E <= 3.0 MeV, in particular a strong resonance at E = 2.14 MeV, which lies at the high-energy tail of the Gamow peak. The resonance increases the present non-resonant reaction rate of the alpha channel by a factor of 5 near T = 8x10^8 K. Due to the resonance structure, extrapolation to the Gamow energy E_G = 1.5 MeV is quite uncertain. An experimental approach based on an underground accelerator placed in a salt mine in combination with a high efficiency detection setup could provide data over the full E_G energy range.Comment: 4 Pages, 4 figures, accepted for publication in Phys. Rev. Let

    Concurrent Suppression of Virus Replication and Rescue of Movement-Defective Virus in Transgenic Plants Expressing the Coat Protein of Potato Virus X

    Get PDF
    AbstractA line of transgenic tobacco expressing the coat protein (CP) of potato virus X (PVX) was resistant against a broad spectrum of PVX strains. Inoculation of leaves and protoplasts with PVX expressing the jellyfish green fluorescent protein reporter gene revealed that this resistance mechanism suppressed PVX replication in the initially infected cell and systemic spread of the virus. Cell-to-cell movement was also slower in the resistant plants. The resistance at the level of replication was effective against wild-type PVX and also against movement-defective isolates with a frameshift mutation or deletion in the CP ORF. However, the cell-to-cell movement defect of the mutant viruses was rescued on the resistant plants. Based on these results it is proposed that the primary resistance mechanism is at the level of replication

    Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps

    Get PDF
    Coarse spaces are instrumental in obtaining scalability for domain decomposition methods for partial differential equations (PDEs). However, it is known that most popular choices of coarse spaces perform rather weakly in the presence of heterogeneities in the PDE coefficients, especially for systems of PDEs. Here, we introduce in a variational setting a new coarse space that is robust even when there are such heterogeneities. We achieve this by solving local generalized eigenvalue problems in the overlaps of subdomains that isolate the terms responsible for slow convergence. We prove a general theoretical result that rigorously establishes the robustness of the new coarse space and give some numerical examples on two and three dimensional heterogeneous PDEs and systems of PDEs that confirm this property

    Secure self-calibrating quantum random bit generator

    Get PDF
    Random bit generators (RBGs) are key components of a variety of information processing applications ranging from simulations to cryptography. In particular, cryptographic systems require "strong" RBGs that produce high-entropy bit sequences, but traditional software pseudo-RBGs have very low entropy content and therefore are relatively weak for cryptography. Hardware RBGs yield entropy from chaotic or quantum physical systems and therefore are expected to exhibit high entropy, but in current implementations their exact entropy content is unknown. Here we report a quantum random bit generator (QRBG) that harvests entropy by measuring single-photon and entangled two-photon polarization states. We introduce and implement a quantum tomographic method to measure a lower bound on the "min-entropy" of the system, and we employ this value to distill a truly random bit sequence. This approach is secure: even if an attacker takes control of the source of optical states, a secure random sequence can be distilled.Comment: 5 pages, 2 figure
    corecore