Random bit generators (RBGs) are key components of a variety of information
processing applications ranging from simulations to cryptography. In
particular, cryptographic systems require "strong" RBGs that produce
high-entropy bit sequences, but traditional software pseudo-RBGs have very low
entropy content and therefore are relatively weak for cryptography. Hardware
RBGs yield entropy from chaotic or quantum physical systems and therefore are
expected to exhibit high entropy, but in current implementations their exact
entropy content is unknown. Here we report a quantum random bit generator
(QRBG) that harvests entropy by measuring single-photon and entangled
two-photon polarization states. We introduce and implement a quantum
tomographic method to measure a lower bound on the "min-entropy" of the system,
and we employ this value to distill a truly random bit sequence. This approach
is secure: even if an attacker takes control of the source of optical states, a
secure random sequence can be distilled.Comment: 5 pages, 2 figure