78 research outputs found

    The Science Case for a Return to Enceladus

    Get PDF
    The plume of Enceladus is unique in the solar system in providing direct access to fresh material from an extraterrestrial subsurface ocean. The Cassini Mission, though not specifically designed for it, was able to take advantage of the plume to conduct the best characterization to date of an extraterrestrial ocean. Evidence gathered from multiple instruments points to a global, subsurface liquid water ocean rich in salts and organic compounds, with water-rock interactions occurring presumably in hydrothermal systems at or below the moon’s sea floor. Meeting the criteria of “extended regions of liquid water, conditions favorable for the assembly of complex organic molecules, and energy source(s) to sustain metabolism,” the ocean of Enceladus can therefore be considered habitable. It is also the only confirmed place beyond the Earth where we can easily sample fresh material from a demonstrably habitable environment without the complications of digging or drilling. The next step is to investigate whether Enceladus’ ocean is actually inhabited. Here, we summarize the evidence for Enceladus’ ocean and its habitability, identify constraints and outstanding questions on the detectability of life within its ocean, and recommend a return to Enceladus with a dedicated search-for-life mission (or missions)

    The Saturn Ring Skimmer Mission Concept: The next step to explore Saturn's rings, atmosphere, interior, and inner magnetosphere

    Get PDF
    The innovative Saturn Ring Skimmer mission concept enables a wide range of investigations that address fundamental questions about Saturn and its rings, as well as giant planets and astrophysical disk systems in general. This mission would provide new insights into the dynamical processes that operate in astrophysical disk systems by observing individual particles in Saturn's rings for the first time. The Ring Skimmer would also constrain the origin, history, and fate of Saturn's rings by determining their compositional evolution and material transport rates. In addition, the Ring Skimmer would reveal how the rings, magnetosphere, and planet operate as an inter-connected system by making direct measurements of the ring's atmosphere, Saturn's inner magnetosphere and the material owing from the rings into the planet. At the same time, this mission would clarify the dynamical processes operating in the planet's visible atmosphere and deep interior by making extensive high-resolution observations of cloud features and repeated measurements of the planet's extremely dynamic gravitational field. Given the scientific potential of this basic mission concept, we advocate that it be studied in depth as a potential option for the New Frontiers program.Comment: White paper submitted to the Planetary Science and Astrobiology Decadal Survey (submission #420

    The Saturn Ring Skimmer Mission Concept: The next step to explore Saturn's rings, atmosphere, interior and inner magnetosphere

    Get PDF
    The innovative Saturn Ring Skimmer mission concept enables a wide range of investigations that address fundamental questions about Saturn and its rings, as well as giant planets and astrophysical disk systems in general. This mission would provide new insights into the dynamical processes that operate in astrophysical disk systems by observing individual particles in Saturn's rings for the first time. The Ring Skimmer would also constrain the origin, history, and fate of Saturn's rings by determining their compositional evolution and material transport rates. In addition, the Ring Skimmer would reveal how the rings, magnetosphere, and planet operate as an inter-connected system by making direct measurements of the ring's atmosphere, Saturn's inner magnetosphere and the material owing from the rings into the planet. At the same time, this mission would clarify the dynamical processes operating in the planet's visible atmosphere and deep interior by making extensive high-resolution observations of cloud features and repeated measurements of the planet's extremely dynamic gravitational field. Given the scientific potential of this basic mission concept, we advocate that it be studied in depth as a potential option for the New Frontiers program

    The ALMA-CRISTAL survey: Widespread dust-obscured star formation in typical star-forming galaxies at z=4-6

    Full text link
    We present the morphological parameters and global properties of dust-obscured star formation in typical star-forming galaxies at z=4-6. Among 26 galaxies composed of 20 galaxies observed by the Cycle-8 ALMA Large Program, CRISTAL, and six galaxies from archival data, we have individually detected rest-frame 158μ\mum dust continuum emission from 19 galaxies, nine of which are reported for the first time. The derived far-infrared luminosities are in the range log10LIR[L]=\log_{10} L_{\rm IR}\,[L_{\odot}]=10.9-12.4, an order of magnitude lower than previously detected massive dusty star-forming galaxies (DSFGs). The average relationship between the fraction of dust-obscured star formation (fobsf_{\rm obs}) and the stellar mass is consistent with previous results at z=4-6 in a mass range of log10M[M]\log_{10} M_{\ast}\,[M_{\odot}]\sim9.5-11.0 and show potential evolution from z=6-9. The individual fobsf_{\rm obs} exhibits a significant diversity, and it shows a correlation with the spatial offset between the dust and the UV continuum, suggesting the inhomogeneous dust reddening may cause the source-to-source scatter in fobsf_{\rm obs}. The effective radii of the dust emission are on average \sim1.5 kpc and are 2\sim2 times more extended than the rest-frame UV. The infrared surface densities of these galaxies (ΣIR2.0×1010Lkpc2\Sigma_{\rm IR}\sim2.0\times10^{10}\,L_{\odot}\,{\rm kpc}^{-2}) are one order of magnitude lower than those of DSFGs that host compact central starbursts. On the basis of the comparable contribution of dust-obscured and dust-unobscured star formation along with their similar spatial extent, we suggest that typical star-forming galaxies at z=4-6 form stars throughout the entirety of their disks

    New Frontiers-class Uranus Orbiter: Exploring the feasibility of achieving multidisciplinary science with a mid-scale mission

    Get PDF
    n/
    corecore