96 research outputs found

    Massive quenched galaxies at z~0.7 retain large molecular gas reservoirs

    Full text link
    The physical mechanisms that quench star formation, turning blue star-forming galaxies into red quiescent galaxies, remain unclear. In this Letter, we investigate the role of gas supply in suppressing star formation by studying the molecular gas content of post-starburst galaxies. Leveraging the wide area of the SDSS, we identify a sample of massive intermediate-redshift galaxies that have just ended their primary epoch of star formation. We present ALMA CO(2-1) observations of two of these post-starburst galaxies at z~0.7 with M* ~ 2x10^11 Msun. Their molecular gas reservoirs of (6.4 +/- 0.8) x 10^9 Msun and (34.0 +/- 1.6) x 10^9 Msun are an order of magnitude larger than comparable-mass galaxies in the local universe. Our observations suggest that quenching does not require the total removal or depletion of molecular gas, as many quenching models suggest. However, further observations are required both to determine if these apparently quiescent objects host highly obscured star formation and to investigate the intrinsic variation in the molecular gas properties of post-starburst galaxies.Comment: Accepted for publication in ApJ Letters (6 pages, 5 figures

    An Analysis of ALMA Deep Fields and the Perceived Dearth of High-z Galaxies

    Get PDF
    Deep, pencil-beam surveys from ALMA at 1.1-1.3mm have uncovered an apparent absence of high-redshift dusty galaxies, with existing redshift distributions peaking around z∼1.5−2.5z\sim1.5-2.5. This has led to a perceived dearth of dusty systems at z>4z>4, and the conclusion, according to some models, that the early Universe was relatively dust-poor. In this paper, we extend the backward evolution galaxy model described by Casey et al. (2018) to the ALMA regime (in depth and area) and determine that the measured number counts and redshift distributions from ALMA deep field surveys are fully consistent with constraints of the infrared luminosity function (IRLF) at z<2.5z<2.5 determined by single-dish submillimeter and millimeter surveys conducted on much larger angular scales (∼1−10\sim1-10deg2^{2}). We find that measured 1.1-1.3mm number counts are most constraining for the measurement of the faint-end slope of the IRLF at z4z4. Recent studies have suggested that UV-selected galaxies at z>4z>4 may be particularly dust-poor, but we find their millimeter-wave emission cannot rule out consistency with the Calzetti dust attenuation law even by assuming relatively typical, cold-dust (Tdust≈30 T_{\rm dust}\approx30\,K) SEDs. Our models suggest that the design of ALMA deep fields requires substantial revision to constrain the prevalence of z>4z>4 early Universe obscured starbursts. The most promising avenue for detection and characterization of such early dusty galaxies will come from future ALMA 2mm blank field surveys covering a few hundred arcmin2^{2} and the combination of existing and future dual-purpose 3mm datasets.Comment: 21 pages, 12 figures, accepted for publication in Ap

    Discovery of a dark, massive, ALMA-only galaxy at z~5-6 in a tiny 3-millimeter survey

    Get PDF
    We report the serendipitous detection of two 3 mm continuum sources found in deep ALMA Band 3 observations to study intermediate redshift galaxies in the COSMOS field. One is near a foreground galaxy at 1.3", but is a previously unknown dust-obscured star-forming galaxy (DSFG) at probable zCO=3.329z_{CO}=3.329, illustrating the risk of misidentifying shorter wavelength counterparts. The optical-to-mm spectral energy distribution (SED) favors a grey λ−0.4\lambda^{-0.4} attenuation curve and results in significantly larger stellar mass and SFR compared to a Calzetti starburst law, suggesting caution when relating progenitors and descendants based on these quantities. The other source is missing from all previous optical/near-infrared/sub-mm/radio catalogs ("ALMA-only"), and remains undetected even in stacked ultradeep optical (>29.6>29.6 AB) and near-infrared (>27.9>27.9 AB) images. Using the ALMA position as a prior reveals faint SNR∼3SNR\sim3 measurements in stacked IRAC 3.6+4.5, ultradeep SCUBA2 850μ\mum, and VLA 3GHz, indicating the source is real. The SED is robustly reproduced by a massive M∗=1010.8M^*=10^{10.8}M⊙_\odot and Mgas=1011M_{gas}=10^{11}M⊙_\odot, highly obscured AV∼4A_V\sim4, star forming SFR∼300SFR\sim300 M⊙_{\odot}yr−1^{-1} galaxy at redshift z=5.5±z=5.5\pm1.1. The ultrasmall 8 arcmin2^{2} survey area implies a large yet uncertain contribution to the cosmic star formation rate density CSFRD(z=5) ∼0.9×10−2\sim0.9\times10^{-2} M⊙_{\odot} yr−1^{-1} Mpc−3^{-3}, comparable to all ultraviolet-selected galaxies combined. These results indicate the existence of a prominent population of DSFGs at z>4z>4, below the typical detection limit of bright galaxies found in single-dish sub-mm surveys, but with larger space densities ∼3×10−5\sim3 \times 10^{-5} Mpc−3^{-3}, higher duty cycles 50−100%50-100\%, contributing more to the CSFRD, and potentially dominating the high-mass galaxy stellar mass function.Comment: Accepted for publication in ApJ. 2 galaxies, too many pages, 8 figures, 2 table

    The Brightest Galaxies in the Dark Ages: Galaxies' Dust Continuum Emission During the Reionization Era

    Get PDF
    Though half of cosmic starlight is absorbed by dust and reradiated at long wavelengths (3μ\mum-3mm), constraints on the infrared through millimeter galaxy luminosity function (the `IRLF') are poor in comparison to the rest-frame ultraviolet and optical galaxy luminosity function, particularly at z>2.5. Here we present a backward evolution model for interpreting number counts, redshift distributions, and cross-band flux density correlations in the infrared and submillimeter sky, from 70μ\mum-2mm, using a model for the IRLF out to the epoch of reionization. Mock submillimeter maps are generated by injecting sources according to the prescribed IRLF and flux densities drawn from model spectral energy distributions that mirror the distribution of SEDs observed in 0<z<50<z<5 dusty star-forming galaxies (DSFGs). We explore two extreme hypothetical case-studies: a dust-poor early Universe model, where DSFGs contribute negligibly (<<10%) to the integrated star-formation rate density at z>4z>4, and an alternate dust-rich early Universe model, where DSFGs dominate ∼\sim90% of z>4z>4 star-formation. We find that current submm/mm datasets do not clearly rule out either of these extreme models. We suggest that future surveys at 2mm will be crucial to measuring the IRLF beyond z∼4z\sim4. The model framework developed in this paper serves as a unique tool for the interpretation of multiwavelength IR/submm extragalactic datasets and will enable more refined constraints on the IRLF than can be made from direct measurements of individual galaxies' integrated dust emission.Comment: 34 pages, 16 figures, accepted for publication in Ap

    Searching Far and Long I: Pilot ALMA 2mm Follow-up of Bright Dusty Galaxies as a Redshift Filter

    Full text link
    A complete census of dusty star-forming galaxies (DSFGs) at early epochs is necessary to constrain the obscured contribution to the cosmic star formation rate density (CSFRD), however DSFGs beyond z∼4z \sim 4 are both rare and hard to identify from photometric data alone due to degeneracies in submillimeter photometry with redshift. Here, we present a pilot study obtaining follow-up Atacama Large Millimeter Array (ALMA) 2 2\,mm observations of a complete sample of 39 850 μm850\,\rm\mu m-bright dusty galaxies in the SSA22 field. Empirical modeling suggests 2 2\,mm imaging of existing samples of DSFGs selected at 850 μm−1 850\,\rm\mu m - 1\,mm can quickly and easily isolate the "needle in a haystack" DSFGs that sit at z>4z>4 or beyond. Combining archival submillimeter imaging with our measured ALMA 2 2\,mm photometry (1σ∼0.08 1\sigma \sim 0.08\,mJy \,beam−1^{-1} rms), we characterize the galaxies' IR SEDs and use them to constrain redshifts. With available redshift constraints fit via the combination of six submillimeter bands, we identify 6/39 high-zz candidates each with >50%>50\% likelihood to sit at z>4z > 4, and find a positive correlation between redshift and 2 2\,mm flux density. Specifically, our models suggest the addition of 2 2\,mm to a moderately constrained IR SED will improve the accuracy of a millimeter-derived redshift from Δz/(1+z)=0.3\Delta z/(1+z) = 0.3 to Δz/(1+z)=0.2\Delta z/(1+z) = 0.2. Our IR SED characterizations provide evidence for relatively high emissivity spectral indices (⟨β⟩=2.4±0.3\langle \beta \rangle = 2.4\pm0.3) in the sample. We measure that especially bright (S850μm>5.55 S_{850\rm\mu m}>5.55\,mJy) DSFGs contribute ∼10\sim10% to the cosmic-averaged CSFRD from 2<z<52<z<5, confirming findings from previous work with similar samples.Comment: 22 pages, 7 figures, accepted for publication in Ap
    • …
    corecore