13 research outputs found

    Agronomic and environmental benefits of ‘re-using’ a biodegradable mulching film for two consecutive lettuce cycles

    Get PDF
    Biodegradable films are a valuable and sustainable alternative to plastic films for mulching soils since they avoid the environmental and economic problems related to plastic removal and dis posal. Nevertheless, the fast degradation of such materials could make them unsuitable for mid-to long-term use. In a field experiment, the agronomic performance of a biodegradable mulching film (MB) was compared to that of conventional low-density polyethylene (LDPE) film for two consecutive lettuce cycles (winter and spring). In the conditions of this trial, MB showed good resistance to atmospheric agents, with a reduction of its integrity and mechanical properties only after six months. The effects on soil temperature and lettuce yield did not differ from those obtained with LDPE films. The effect on harvest timing was the same as that with LDPE in the spring cycle, while in the winter cycle, the harvest was delayed by about five days compared to LDPE. Mulching films reduced nitrate accumulation in leaves mainly during the winter cycle. However, the effect needs to be further explored with experiments in different pedoclimatic conditions that consider the effects of mulching on nitrification and nitrate-reductase activity that could be affected by changes in soil temperature and moisture

    Phenolic Composition and Antioxidant and Antiproliferative Activities of the Extracts of Twelve Common Bean ( Phaseolus vulgaris

    Get PDF
    Beans are important dietary components with versatile health benefits. We analysed the extracts of twelve ecotypes of Phaseolus vulgaris in order to determine their phenolic profiles, antioxidant activity, and the in vitro antiproliferative activity. Ultra-performance liquid chromatography with diode array detector (UPLC-DAD) admitted us to detect and quantify some known polyphenols, such as gallic acid, chlorogenic acid, epicatechin, myricetin, formononetin, caffeic acid, and kaempferol. The antioxidant activity (AA) ranged from 1.568 ± 0.041 to 66.572 ± 3.197 mg necessary to inhibit the activity of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical by 50% (EC50). The extracts, except those obtained from the nonpigmented samples, were capable of inhibiting the proliferation of the human epithelial colorectal adenocarcinoma (Caco-2) cells, human breast cancer cells MCF-7, and A549 NSCLC cell line. Cultivars differed in composition and concentration of polyphenols including anthocyanins; cooking affected the antioxidant activity only marginally. Qualitative and quantitative differences in phenolic composition between the groups of beans influenced the biological activities; on the other hand, we did not find significant differences on the biological activities within the same variety, before and after cooking

    Sensory Traits and Consumer’s Perceived Quality of Traditional and Modern Fresh Market Tomato Varieties: A Study in Three European Countries

    Get PDF
    Consumer dissatisfaction with the flavor quality of many modern fresh market tomato varieties has fostered breeders’ interest in sensory quality improvement, and the demand for traditional varieties, which are generally associated with better flavor. To achieve further knowledge on the factors influencing the sensory quality and consumers’ preferences and perception, European traditional and modern fresh market tomato varieties were grown and evaluated in France, Italy, and Spain. Different growing conditions were tested in France (soilless vs. soil) and in Spain (open field vs. greenhouse), while in Italy fruits were evaluated at two ripening stages. Fruit quality was assessed by integrating physicochemical analyses, sensory profiles, and consumer tests. In all three countries, overall modern varieties were perceived as having more intense “tomato flavor” and “overall flavor” than traditional ones. In France and Spain, consumers’ preferences were more oriented towards modern varieties than traditional ones. Significant growing condition effects were found on sensory and physicochemical traits, while the effect on consumers’ overall liking was not significant, largely depending on the genotype. A fair agreement between product configurations from descriptive analysis by trained assessors and Check-All-That-Apply (CATA) questions by consumers was observed. Penalty-lift analysis based on CATA allowed identifying positive and negative drivers of liking

    A Technology Platform For the Sustainable Recovery and Advanced Use of Nanostructured Cellulose from Agri-Food Residues (PANACEA Project)

    No full text
    The European food sector generates about 250 million ton/year of by-products and waste, of which around 10% is from fruit and vegetable processing, with a heavy environmental burden. The agri-food residues (AFRs) contain a significant fraction of cellulose and bioactive compounds, which, if recovered, are high added-value material components. The reduction of cellulose down to nano-sized crystalline structures (nanocellulose, NC) provides versatile building blocks, which self-assemble into new materials with superior performances. The PANACEA project, within the frame of PRIN 2017 call supported by the Italian Ministry of University and Research, proposes an approach based on the recovery of cellulose and bioactive compounds from AFRs, with high yield, at various degrees of hierarchical organization, by cascading different physical and chemical processes of increasing complexity, including physical processes and microbial digestion to obtain micro-and nano-sized cellulose structures while preserving their bioactivity. Chemical and enzymatic processes are used to isolate, purify, and functionalize NC at different levels of hierarchical organization, and to design advanced functional materials such as food ingredients, edible coatings, functional colloids, biocides, and flame retardants

    Yield and Quality Traits of Tomato ‘San Marzano’ Type as Affected by Photo-Selective Low-Density Polyethylene Mulching

    No full text
    The aim of the present study is to investigate the effect of differently colored low-density polyethylene mulching films (black, silver/brown, and yellow/brown) in comparison with bare soil (BS) on soil temperatures, yield and yield components (number of fruit and average fruit weight), and fruit quality traits (color, firmness, total soluble solids content, polyphenols, flavonoids, ascorbic acid, carotenoids, and antioxidant activity) of a ‘San Marzano’ tomato crop grown in Southern Italy over two years (2014 and 2015). The warmer season (2015) shortened the cropping cycle (124 vs. 178 days, 2015 vs. 2014), thereby accelerating fruit ripening and improving firmness and redness (on average, the color parameter a/b was greater than in 2014). It determined the best yield response (53 vs. 44 Mg ha−1) by increasing the number of commercial fruits per unit land area despite the lower average fresh weight (AFW) than the first year. Regardless of the different plastic films, in both years, soil heat storage produced by mulching improved yield as compared to BS and showed a positive and significant effect on the contents of total soluble solids, polyphenols, flavonoids, and carotenoids without affecting the antioxidant activity. The highest values of quality traits were reached in the second year with silver and yellow mulches. Therefore, since the colored mulching films (yellow and silver) had a contradictory effect on yield and quality in the two years, further investigation is desirable

    Biodegradable Mulching Film vs. Traditional Polyethylene: Effects on Yield and Quality of San Marzano Tomato Fruits

    No full text
    Mulching is a common practice for improving crop yield and obtaining an out-of-season production, but when made using plastic materials it can bring environmental problems due to the management and the disposal of films at the end of the cropping seasons. To increase the sustainability of this practice, recently, mulching films made with biodegradable organic materials have become more widely used. Our aim was to evaluate the effect of a biodegradable mulching film on yield and qualitative traits of the San Marzano tomato fruits over two years (2014 and 2015). Two different types of mulching were tested: (i) black biodegradable film (MB12) and (ii) black low-density polyethylene (LDPE) were compared to bare soil (BS). Both mulching films elicited a 25% increase in yield, mainly due to the significantly higher number of fruits per square meter, compared to BS. Both mulching films also elicited a 9.9% increase in total soluble solids and a 57% increase in carotenoid content, while firmness showed the highest value in BS fruits. MB12 determined the highest value of the Hunter color ratio a/b of tomato fruits, followed by LDPE, while the lowest value was recorded in BS fruits. Both mulching films elicited an increase of 9.6%, 26.0%, and 11.7% for flavonoids, polyphenols, and AsA, respectively. In 2014, the MB12 degradation started at 71 days after transplant (DAT); in 2015, at 104 DAT. Therefore, replacing polyethylene with biodegradable film would seem to be an agronomically efficient and environmentally sustainable practice
    corecore