25 research outputs found

    Rigorous Model-Based Design and Experimental Verification of Enzyme-Catalyzed Carboligation under Enzyme Inactivation

    Get PDF
    Enzyme catalyzed reactions are complex reactions due to the interplay of the enzyme, the reactants, and the operating conditions. To handle this complexity systematically and make use of a design space without technical restrictions, we apply the model based approach of elementary process functions (EPF) for selecting the best process design for enzyme catalysis problems. As a representative case study, we consider the carboligation of propanal and benzaldehyde catalyzed by benzaldehyde lyase from Pseudomonas fluorescens (PfBAL) to produce (R)-2-hydroxy-1-phenylbutan-1-one, because of the substrate dependent reaction rates and the challenging substrate dependent PfBAL inactivation. The apparatus independent EPF concept optimizes the material fluxes influencing the enzyme catalyzed reaction for the given process intensification scenarios. The final product concentration is improved by 13% with the optimized feeding rates, and the optimization results are verified experimentally. In general, the rigorous model driven approach could lead to selecting the best existing reactor, designing novel reactors for enzyme catalysis, and combining protein engineering and process systems engineering concept

    Practical screening of purified cellobiohydrolases and endoglucanases with α-cellulose and specification of hydrodynamics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is important to generate biofuels and society must be weaned from its dependency on fossil fuels. In order to produce biofuels, lignocellulose is pretreated and the resulting cellulose is hydrolyzed by cellulases such as cellobiohydrolases (CBH) and endoglucanases (EG). Until now, the biofuel industry has usually applied impractical celluloses to screen for cellulases capable of degrading naturally occurring, insoluble cellulose. This study investigates how these cellulases adsorb and hydrolyze insoluble α-cellulose − considered to be a more practical substrate which mimics the alkaline-pretreated biomass used in biorefineries. Moreover, this study investigates how hydrodynamics affects cellulase adsorption and activity onto α-cellulose.</p> <p>Results</p> <p>First, the cellulases CBH I, CBH II, EG I and EG II were purified from <it>Trichoderma reesei </it>and CBH I and EG I were utilized in order to study and model the adsorption isotherms (Langmuir) and kinetics (pseudo-first-order). Second, the adsorption kinetics and cellulase activities were studied under different hydrodynamic conditions, including liquid mixing and particle suspension. Third, in order to compare α-cellulose with three typically used celluloses, the exact cellulase activities towards all four substrates were measured.</p> <p>It was found that, using α-cellulose, the adsorption models fitted to the experimental data and yielded parameters comparable to those for filter paper. Moreover, it was determined that higher shaking frequencies clearly improved the adsorption of cellulases onto α-cellulose and thus bolstered their activity. Complete suspension of α-cellulose particles was the optimal operating condition in order to ensure efficient cellulase adsorption and activity. Finally, all four purified cellulases displayed comparable activities only on insoluble α-cellulose.</p> <p>Conclusions</p> <p>α-Cellulose is an excellent substrate to screen for CBHs and EGs. This current investigation shows in detail, for the first time, the adsorption of purified cellulases onto α-cellulose, the effect of hydrodynamics on cellulase adsorption and the correlation between the adsorption and the activity of cellulases at different hydrodynamic conditions. Complete suspension of the substrate has to be ensured in order to optimize the cellulase attack. In the future, screenings should be conducted with α-cellulose so that proper cellulases are selected to best hydrolyze the real alkaline-pretreated biomass used in biorefineries.</p

    How recombinant swollenin from Kluyveromyces lactis affects cellulosic substrates and accelerates their hydrolysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In order to generate biofuels, insoluble cellulosic substrates are pretreated and subsequently hydrolyzed with cellulases. One way to pretreat cellulose in a safe and environmentally friendly manner is to apply, under mild conditions, non-hydrolyzing proteins such as swollenin - naturally produced in low yields by the fungus <it>Trichoderma reesei</it>. To yield sufficient swollenin for industrial applications, the first aim of this study is to present a new way of producing recombinant swollenin. The main objective is to show how swollenin quantitatively affects relevant physical properties of cellulosic substrates and how it affects subsequent hydrolysis.</p> <p>Results</p> <p>After expression in the yeast <it>Kluyveromyces lactis</it>, the resulting swollenin was purified. The adsorption parameters of the recombinant swollenin onto cellulose were quantified for the first time and were comparable to those of individual cellulases from <it>T. reesei</it>. Four different insoluble cellulosic substrates were then pretreated with swollenin. At first, it could be qualitatively shown by macroscopic evaluation and microscopy that swollenin caused deagglomeration of bigger cellulose agglomerates as well as dispersion of cellulose microfibrils (amorphogenesis). Afterwards, the effects of swollenin on cellulose particle size, maximum cellulase adsorption and cellulose crystallinity were quantified. The pretreatment with swollenin resulted in a significant decrease in particle size of the cellulosic substrates as well as in their crystallinity, thereby substantially increasing maximum cellulase adsorption onto these substrates. Subsequently, the pretreated cellulosic substrates were hydrolyzed with cellulases. Here, pretreatment of cellulosic substrates with swollenin, even in non-saturating concentrations, significantly accelerated the hydrolysis. By correlating particle size and crystallinity of the cellulosic substrates with initial hydrolysis rates, it could be shown that the swollenin-induced reduction in particle size and crystallinity resulted in high cellulose hydrolysis rates.</p> <p>Conclusions</p> <p>Recombinant swollenin can be easily produced with the robust yeast <it>K. lactis</it>. Moreover, swollenin induces deagglomeration of cellulose agglomerates as well as amorphogenesis (decrystallization). For the first time, this study quantifies and elucidates in detail how swollenin affects different cellulosic substrates and their hydrolysis.</p

    Optimization of Adsorptive Immobilization of Alcohol Dehydrogenases

    Get PDF
    In this work, a systematic examination of various parameters of adsorptive immobilization of alcohol dehydrogenases (ADHs) on solid support is performed and the impact of these parameters on immobilization efficiency is studied. Depending on the source of the enzymes, these parameters differently influence the immobilization efficiency, expressed in terms of residual activity and protein loading. Residual activity of 79% was achieved with ADH from bakers’ yeast (YADH) after optimizing the immobilization parameters. A step-wise drying process has been found to be more effective than one-step drying. A hypothesis of deactivation through bubble nucleation during drying of the enzyme/glass bead suspension at low drying pressure (<45 kPa) is experimentally verified. In the case of ADH from Lactobacillus brevis (LBADH), >300% residual activity was found after drying. Hyperactivation of the enzyme is probably caused by structural changes in the enzyme molecule during the drying process. ADH from Thermoanaerobacter species (ADH T) is found to be stable under drying conditions (>15 kPa) in contrast to LBADH and YADH.
    corecore