43 research outputs found

    Vocal behaviour of bowhead whales (Balaena mysticetus) in eastern Fram Strait

    Get PDF
    Bowhead whales (Balaena mysticetus) of the East Greenland-Svalbard-Barents Sea (Spitsbergen) population have been depleted close to the point of extinction by commercial whaling and are still considered as endangered. Due to their low abundance and the remoteness of their habitat, baseline knowledge on spatio-temporal distribution patterns and behavioural aspects are scarce, yet crucial for the conservation of this population. Long-term passive acoustic recordings were collected at different locations in eastern Fram Strait (78-79°N, 0-7°E) as part of the Ocean Observing System FRAM (Frontiers in Arctic Marine Monitoring). Data recorded in 2012 and 2016/2017 were analysed for the acoustic occurrence of bowhead whales at an hourly resolution using an automated detector. Bowhead whales were acoustically present from autumn throughout the winter months (October-February) and occasionally in spring (March-June), supporting hypotheses that Fram Strait is an important overwintering area. Acoustic presence peaked between mid-November and mid-December when bowhead whales were recorded almost daily, often hourly for several days in a row. The observed peak in acoustic presence coincided with the presumed mating period of bowhead whales, starting in late winter, indicating that Fram Strait may also serve as a mating area. Detailed analyses of recordings of a single year and location revealed eight distinct bowhead whale song types comprising simple songs and call sequences. No bowhead whales were recorded in summer (July-September), indicating that they either were vocally inactive or had migrated to summering areas. Compared to previous studies in western Fram Strait, bowhead whale detections in our recordings were less frequent and less complex. The observed regional differences in bowhead whale acoustic behaviour across Fram Strait suggest that our mooring locations in eastern Fram Strait may represent the eastern distribution boundary of the bowhead whale overwintering area

    Acoustic presence and vocal repertoire of bowhead whales (Balaena mysticetus) in eastern and central Fram Strait

    Get PDF
    Bowhead whales (Balaena mysticetus) of the East Greenland-Svalbard-Barents Sea (Spitsbergen) population are still considered endangered, but knowledge on spatio-temporal distribution patterns and behavioral aspects remains scarce, yet crucial for this population’s conservation. Long-term passive acoustic recordings were collected at five locations in central and eastern Fram Strait (78-79°N, 0-7°E) as part of the Ocean Observing System FRAM (Frontiers in Arctic Marine Monitoring). Data recorded in 2012 and 2016/2017 were analyzed for the acoustic occurrence of bowhead whales at hourly resolution using a combination of automated and manual analyses. Bowhead whales were acoustically present from autumn throughout the winter months (October-February) and occasionally in spring (March-June), supporting hypotheses that Fram Strait is an important overwintering area. Acoustic presence peaked between mid-November and mid-December with bowhead whale calls recorded almost daily, often hourly for several consecutive days. The observed peak in acoustic presence coincided with the presumed mating period of bowhead whales, starting in late winter, indicating that Fram Strait may also serve as a mating area. Detailed analyses of recordings of a single year and location revealed eight distinct bowhead whale song types, comprising simple songs and call sequences. No bowhead whales were recorded in summer (July-September), indicating that they had migrated to summering areas or resided outside the detection range. Compared to previous studies in western Fram Strait, bowhead whale detections in our recordings were less frequent and recorded songs were less complex. The observed regional differences in bowhead whale acoustic behavior across Fram Strait suggest that eastern Fram Strait may represent a less favorable part of the bowhead whale overwintering area.</jats:p

    Frozen verses: Antarctic minke whales (Balaenoptera bonaerensis) call predominantly during austral winter

    Get PDF
    The recent identification of the bio-duck call as Antarctic minke whale (AMW) vocalization allows the use of passive acoustic monitoring to retrospectively investigate year-round spatial-temporal patterns in minke whale occurrence in ice-covered areas. Here, we present an analysis of AMW occurrence patterns based on a 9-year passive acoustic dataset (2008–2016) from 21 locations throughout the Atlantic sector of the Southern Ocean (Weddell Sea). AMWs were detected acoustically at all mooring locations from May to December, with the highest presence between August and November (bio-duck calls present at more than 80% of days). At the southernmost recording locations, the bio-duck call was present up to 10 months of the year. Substantial inter-annual variation in the seasonality of vocal activity correlated to variation in local ice concentration. Our analysis indicates that part of the AMW population stays in the Weddell Sea during austral winter. The period with the highest acoustic presence in the Weddell Sea (September–October) coincides with the timing of the breeding season of AMW in lower latitudes. The bio-duck call could therefore play a role in mating, although other behavioural functions of the call cannot be excluded to date

    Spatio-temporal patterns in acoustic presence and distribution of Antarctic blue whales Balaenoptera musculus intermedia in the Weddell Sea

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Endangered Species Research 30 (2016): 239-253, doi:10.3354/esr00739.Distribution and movement patterns of Antarctic blue whales Balaenoptera musculus intermedia at large temporal and spatial scales are still poorly understood. The objective of this study was to explore spatio-temporal distribution patterns of Antarctic blue whales in the Atlantic sector of the Southern Ocean, using passive acoustic monitoring data. Multi-year data were collected between 2008 and 2013 by 11 recorders deployed in the Weddell Sea and along the Greenwich meridian. Antarctic blue whale Z-calls were detected via spectrogram cross-correlation. A Blue Whale Index was developed to quantify the proportion of time during which acoustic energy from Antarctic blue whales dominated over background noise. Our results show that Antarctic blue whales were acoustically present year-round, with most call detections between January and April. During austral summer, the number of detected calls peaked synchronously throughout the study area in most years, and hence, no directed meridional movement pattern was detectable. During austral winter, vocalizations were recorded at latitudes as high as 69°S, with sea ice cover exceeding 90%, suggesting that some Antarctic blue whales overwinter in Antarctic waters. Polynyas likely serve as an important habitat for baleen whales during austral winter, providing food and reliable access to open water for breathing. Overall, our results support increasing evidence of a complex and non-obligatory migratory behavior of Antarctic blue whales, potentially involving temporally and spatially dynamic migration routes and destinations, as well as variable timing of migration to and from the feeding grounds

    The marine soundscape off Elephant Island: A Southern Ocean coastal habitat

    Get PDF
    Here we present a comprehensive description of the acoustic environment approximately 31 km west-northwest of Minstrel Point, Elephant Island, Antarctica at 210 m water depth based on three years (Jan 2013 – Feb 2016) of subsampled (5 min per hour) passive acoustic recordings. Long-term spectrograms reveal a notable recurrence of acoustic environments between years. Fin and Antarctic blue whale calls dominate the low (< 100 Hz) part of the biophonic spectrum energetically from end of January to late July/early August. November through early January are dominated by leopard seal vocalizations at around 300 Hz. Concurrently, the geophonic spectrum exhibits strong fluctuations between days, both due to storm and tidal influences, causing flow and shackle noise from the instrumentation itself. Manual analysis of every second day of the subsampled data by visual and aural screening (employing short term spectrograms) was used to examine the data in greater detail for additional acoustic contributions and to assign the various acoustic signatures to their sources. Six cetacean and two pinniped species were identified based on their acoustic signatures and analysed for seasonal and diel patterns in occurrence. Anthrophonic signatures were attributed to air guns on 3 % of the analysed days. Vessel noise was noted between 10 and 12% of days on annual averages, occurring mainly in austral summer and fall with sporadic events throughout the remainder of the year

    Fin whale (Balaenoptera physalus) acoustic presence off Elephant Island, Antarctica

    Get PDF
    Recent visual observations suggest that the region around Elephant Island serves as an important feeding area for fin whales. Passive acoustic recordings collected northwest of Elephant Island (61°0.88’S, 55°58.53’W) from January 2013 to February 2016 were analysed manually for seasonal and diel patterns of fin whale 20 Hz calls. Overall, calls were detected year-round, although in some years calls were not present during all months. For all years, fin whale calls were consistently present from February to July for more than 90% of days per month. From August to January, percentage of days with calls varied between years, with presence exceeding 75% of days per month throughout 2014, whereas in 2015 calls were absent in October and November. In 2013, fin whale calling dropped in August and increased again towards November (present 80% of days per month). Diel patterns in call activity were analysed for a 10-month subset of the data from 2013. Fluctuations in call rates did not follow a diel pattern nor correspond to local insolation. During peak calling period, maximum calls amounted approximately to 80 per 10-minute file. Fluctuations in call presence outside the peak calling period may be explained by variation in local ice conditions as drift may temporally force the animals away to areas with reduced ice concentrations. Furthermore, delays in the timing of migration between age groups, sexes and/or reproductive classes may also affect temporal patterns in the clustering of calls. The observed peaks in fin whale call activity correspond to the periods during which fin whale super groups have been repeatedly observed visually in this region. Our year-round acoustic analysis indicates that the Elephant Island region is likely to play an important role for fin whales throughout the remainder of the year

    Fin whale (Balaenoptera physalus) acoustic presence off Elephant Island (South Shetland Islands), Antarctica

    Get PDF
    Summertime visual observations suggest that the region around Elephant Island may serve as an important feeding area for fin whales. To explore its year-round relevance, passive acoustic recordings collected northwest of Elephant Island (61°0.88’S, 55°58.53’W) from January 2013 to February 2016 were analysed for seasonal and diel patterns of fin whale 20 Hz calls. Calls were detected year-round, although in some years calls were not present during all months. For all years, fin whale calls were consistently present from March to July for more than 90% of days per month. From August to January, percentage of days with calls varied between years, with presence exceeding 75% of days per month throughout 2014, whereas in 2015 calls were absent in October and November. In 2013, fin whale calling dropped in August and increased again towards October and November. Quantitative analyses of power spectral density for the 20-Hz and 89-Hz fin whale bands, showed that fin whale acoustic power in both frequency bands followed a Gaussian-like temporal pattern, increasing in late January, peaking during April-May and decreasing in late August for all years. A second shoulder peak in PSD seemed to occur during the second part of July showing strongest for the upper fin whale band, followed by a rapid decrease, after which SNR for both bands dropped to zero. Diel patterns in call activity were analysed for a 10-month subset of the data from 2013. Fluctuations in call rates did not follow a diel pattern nor correspond to local insolation. The observed peaks in fin whale call activity correspond to the periods during which fin whale super groups have been observed visually in this region. Our year-round acoustic analysis indicates that the Elephant Island region likely carries an important role for fin whales throughout the entire year

    Fluid-rock interaction at the backstop to the Mediterranean Ridge Accretionary Complex South of Crete : R/V SONNE Cruise Report SO278 : Emden (Germany), 12.10.2020 - Emden (Germany), 01.12.2020 : FRINGE

    Get PDF
    The research cruise to the Eastern Mediterranean (GPF-18-2-40) originally planned on RV METEOR was relocated to RV SONNE (Fig. 1.2) due to the reduced number of scientists as part of the corona pandemic. The main objective of the Bremen Ocean Cluster expedition (DFG, EXC2077) was to investigate the interactions between the seabed and ocean water in Greek waters, whereby the plate tectonic constellation of a broad collision zone represents a special tectonic drive. A secondary goal was the sampling of the Sartori mud volcano, which is being processed in Italian waters as part of a separate DFG project and for which the GPF granted an additional permit for ship time (GPF 20-1_054). The expedition began on 12 October in Emden/Germany and ended on 01 December 2020, in Emden. Investigations on mud volcanoes were carried out divided into 3 working areas (Fig. 1.1, the Sartori mud volcano in the Calabrian arc, the so-called Cobblestone Area, the Olimpi mud volcano field including the United Nation Ridge). With the MARUM AUV SEAL (Fig. 1.3) 11 dives were successfully carried out to create high-resolution detailed maps of certain seafloor structures. A total of 38 gravity cores (Fig. 1.4), 30 multicorers (Fig. 1.5) and 4 minicorers were used for sampling sediments and 6 CTD stations for sampling methane in the water column. Furthermore, 10 profiles were carried out with the heat flow lance and 5 observation profiles with the on-board OFOS. In four different provinces, 16 mud volcanoes were examined, 10 of which are characterized by pore waters that show a distinct freshening, while three mud volcanoes, Napoli, Heraklion and Gelendzhik, are characterized by very high salt concentrations. The salt accumulations in these structures are derived from the Messinian salt deposits in the subbed, from which salty brines arise through subrosion, which interact in various ways with the mud volcanoes. The study areas were selected based on preliminary surveys and morphological structures and increased backscatter patterns from multibeam mapping carried out over 3580 nautical miles in Italian and Greek waters.32
    corecore