Fluid-rock interaction at the backstop to the Mediterranean Ridge Accretionary Complex South of Crete : R/V SONNE Cruise Report SO278 : Emden (Germany), 12.10.2020 - Emden (Germany), 01.12.2020 : FRINGE

Abstract

The research cruise to the Eastern Mediterranean (GPF-18-2-40) originally planned on RV METEOR was relocated to RV SONNE (Fig. 1.2) due to the reduced number of scientists as part of the corona pandemic. The main objective of the Bremen Ocean Cluster expedition (DFG, EXC2077) was to investigate the interactions between the seabed and ocean water in Greek waters, whereby the plate tectonic constellation of a broad collision zone represents a special tectonic drive. A secondary goal was the sampling of the Sartori mud volcano, which is being processed in Italian waters as part of a separate DFG project and for which the GPF granted an additional permit for ship time (GPF 20-1_054). The expedition began on 12 October in Emden/Germany and ended on 01 December 2020, in Emden. Investigations on mud volcanoes were carried out divided into 3 working areas (Fig. 1.1, the Sartori mud volcano in the Calabrian arc, the so-called Cobblestone Area, the Olimpi mud volcano field including the United Nation Ridge). With the MARUM AUV SEAL (Fig. 1.3) 11 dives were successfully carried out to create high-resolution detailed maps of certain seafloor structures. A total of 38 gravity cores (Fig. 1.4), 30 multicorers (Fig. 1.5) and 4 minicorers were used for sampling sediments and 6 CTD stations for sampling methane in the water column. Furthermore, 10 profiles were carried out with the heat flow lance and 5 observation profiles with the on-board OFOS. In four different provinces, 16 mud volcanoes were examined, 10 of which are characterized by pore waters that show a distinct freshening, while three mud volcanoes, Napoli, Heraklion and Gelendzhik, are characterized by very high salt concentrations. The salt accumulations in these structures are derived from the Messinian salt deposits in the subbed, from which salty brines arise through subrosion, which interact in various ways with the mud volcanoes. The study areas were selected based on preliminary surveys and morphological structures and increased backscatter patterns from multibeam mapping carried out over 3580 nautical miles in Italian and Greek waters.32

    Similar works