305 research outputs found

    Characterization of antigen-presenting properties of tumour cells using virus-specific cytotoxic T lymphocytes

    Get PDF
    Immunotherapy of tumours by induction of tumour-specific cytotoxic T-lymphocytes (CTLs) will only be effective for tumours with a functional antigen processing and presentation machinery. However, many tumours are known to down-regulate expression of major histocompatibility complex (MHC) class I molecules and/or to impair antigen processing. It is therefore desirable to evaluate the ability of a given tumour to present antigenic epitopes before developing an immunotherapy protocol. In this study we have used influenza virus as a tool to determine the antigen-presenting capacities of the murine neuroblastoma C1300 cell line NB41A3, a frequently used model for human neuroblastoma. Immunofluorescence analyses revealed low and moderate expression of MHC class I molecules Ddand Kkrespectively. Nevertheless, infected NB41A3 cells were lysed efficiently by influenza-specific CTLs. These results demonstrate that all steps of the antigen-processing pathway function properly in the NB tumour cells, and that the limited MHC class I expression suffices for efficient recognition by CTLs. In addition, lysis of the NB tumour cells shows that the cells are susceptible to CTL-induced apoptosis, a pathway that is often impaired in tumour cells. These characteristics make neuroblastoma a suitable target for immunotherapy. The presented assay allows evaluation of various immunological properties of tumour cells and, thus, represents a valuable tool to assess whether a given tumour will be susceptible to immunotherapy or not. Copyright 2000 Cancer Research Campaign. © 2000 Cancer Research Campaig

    Construction of Strand-seq libraries in open nanoliter arrays

    Get PDF
    Single-cell Strand-seq generates directional genomic information to study DNA repair, assemble genomes, and map structural variation onto chromosome-length haplotypes. We report a nanoliter-volume, one-pot (OP) Strand-seq library preparation protocol in which reagents are added cumulatively, DNA purification steps are avoided, and enzymes are inactivated with a thermolabile protease. OP-Strand-seq libraries capture 10%-25% of the genome from a single-cell with reduced costs and increased throughput

    Disruption of the MDM2–p53 interaction strongly potentiates p53-dependent apoptosis in cisplatin-resistant human testicular carcinoma cells via the Fas/FasL pathway

    Get PDF
    Wild-type p53 has a major role in the response and execution of apoptosis after chemotherapy in many cancers. Although high levels of wild-type p53 and hardly any TP53 mutations are found in testicular cancer (TC), chemotherapy resistance is still observed in a significant subgroup of TC patients. In the present study, we demonstrate that p53 resides in a complex with MDM2 at higher cisplatin concentrations in cisplatin-resistant human TC cells compared with cisplatin-sensitive TC cells. Inhibition of the MDM2–p53 interaction using either Nutlin-3 or MDM2 RNA interference resulted in hyperactivation of the p53 pathway and a strong induction of apoptosis in cisplatin-sensitive and -resistant TC cells. Suppression of wild-type p53 induced resistance to Nutlin-3 in TC cells, demonstrating the key role of p53 for Nutlin-3 sensitivity. More specifically, our results indicate that p53-dependent induction of Fas membrane expression (∼threefold) and enhanced Fas/FasL interactions at the cell surface are important mechanisms of Nutlin-3-induced apoptosis in TC cells. Importantly, an analogous Fas-dependent mechanism of apoptosis upon Nutlin-3 treatment is executed in wild-type p53 expressing Hodgkin lymphoma and acute myeloid leukaemia cell lines. Finally, we demonstrate that Nutlin-3 strongly augmented cisplatin-induced apoptosis and cell kill via the Fas death receptor pathway. This effect is most pronounced in cisplatin-resistant TC cells

    A living biobank of ovarian cancer ex vivo models reveals profound mitotic heterogeneity

    Get PDF
    High-grade serous ovarian carcinoma is characterised by TP53 mutation and extensive chromosome instability (CIN). Because our understanding of CIN mechanisms is based largely on analysing established cell lines, we developed a workflow for generating ex vivo cultures from patient biopsies to provide models that support interrogation of CIN mechanisms in cells not extensively cultured in vitro. Here, we describe a “living biobank” of ovarian cancer models with extensive replicative capacity, derived from both ascites and solid biopsies. Fifteen models are characterised by p53 profiling, exome sequencing and transcriptomics, and karyotyped using single-cell whole-genome sequencing. Time-lapse microscopy reveals catastrophic and highly heterogeneous mitoses, suggesting that analysis of established cell lines probably underestimates mitotic dysfunction in advanced human cancers. Drug profiling reveals cisplatin sensitivities consistent with patient responses, demonstrating that this workflow has potential to generate personalized avatars with advantages over current pre-clinical models and the potential to guide clinical decision making

    Direct chromosome-length haplotyping by single-cell sequencing

    Get PDF
    Haplotypes are fundamental to fully characterize the diploid genome of an individual, yet methods to directly chart the unique genetic makeup of each parental chromosome are lacking. Here we introduce single-cell DNA template strand sequencing (Strand-seq) as a novel approach to phasing diploid genomes along the entire length of all chromosomes. We demonstrate this by building a complete haplotype for a HapMap individual (NA12878) at high accuracy (concordance 99.3%), without using generational information or statistical inference. By use of this approach, we mapped all meiotic recombination events in a family trio with high resolution (median range ∼14 kb) and phased larger structural variants like deletions, indels, and balanced rearrangements like inversions. Lastly, the single-cell resolution of Strand-seq allowed us to observe loss of heterozygosity regions in a small number of cells, a significant advantage for studies of heterogeneous cell populations, such as cancer cells. We conclude that Strand-seq is a unique and powerful approach to completely phase individual genomes and map inheritance patterns in families, while preserving haplotype differences between single cells

    Improved assembly and variant detection of a haploid human genome using single-molecule, high-fidelity long reads

    Get PDF
    The sequence and assembly of human genomes using long-read sequencing technologies has revolutionized our understanding of structural variation and genome organization. We compared the accuracy, continuity, and gene annotation of genome assemblies generated from either high-fidelity (HiFi) or continuous long-read (CLR) datasets from the same complete hydatidiform mole human genome. We find that the HiFi sequence data assemble an additional 10% of duplicated regions and more accurately represent the structure of tandem repeats, as validated with orthogonal analyses. As a result, an additional 5 Mbp of pericentromeric sequences are recovered in the HiFi assembly, resulting in a 2.5-fold increase in the NG50 within 1 Mbp of the centromere (HiFi 480.6 kbp, CLR 191.5 kbp). Additionally, the HiFi genome assembly was generated in significantly less time with fewer computational resources than the CLR assembly. Although the HiFi assembly has significantly improved continuity and accuracy in many complex regions of the genome, it still falls short of the assembly of centromeric DNA and the largest regions of segmental duplication using existing assemblers. Despite these shortcomings, our results suggest that HiFi may be the most effective standalone technology for de novo assembly of human genomes

    Allocation to highly sensitized patients based on acceptable mismatches results in low rejection rates comparable to non-sensitized patients

    Get PDF
    Whereas regular allocation avoids unacceptable mismatches on the donor organ, allocation to highly sensitized patients within the Eurotransplant Acceptable Mismatch (AM) program is based on the patient's HLA phenotype plus acceptable antigens. These are HLA antigens to which the patient never made antibodies, determined by extensive laboratory testing. AM patients have superior long-term graft survival compared to highly sensitized patients in regular allocation. Here, we questioned whether the AM program also results in lower rejection rates. From the PROCARE cohort, consisting of all Dutch kidney transplants 1995-2005, we selected deceased donor single transplants with minimum one HLA mismatch and determined the cumulative 6-month rejection incidence for patients in AM or regular allocation. Additionally, we determined the effect of minimal matching criteria of one HLA-B plus one HLA-DR, or two HLA-DR antigens on rejection incidence. AM patients showed significantly lower rejection rates than highly immunized patients in regular allocation, comparable to non-sensitized patients, independent of other risk factors for rejection. Contrasting to highly sensitized patients in regular allocation, minimal matching criteria did not affect rejection rates in AM patients. Allocation based on acceptable antigens leads to relatively low risk transplants for highly sensitized patients with rejection rates similar to non-immunized individuals. This article is protected by copyright. All rights reserved.</p

    The prevalence of triggers in paediatric migraine: a questionnaire study in 102 children and adolescents

    Get PDF
    The prevalence and characterization of migraine triggers have not been rigorously studied in children and adolescents. Using a questionnaire, we retrospectively studied the prevalence of 15 predefined trigger factors in a clinic-based population. In 102 children and adolescents fulfilling the Second Edition of The International Headache Classification criteria for paediatric migraine, at least one migraine trigger was reported by the patient and/or was the parents’ interpretation in 100% of patients. The mean number of migraine triggers reported per subject was 7. Mean time elapsed between exposure to a trigger factor and attack onset was comprised between 0 and 3 h in 88 patients (86%). The most common individual trigger was stress (75.5% of patients), followed by lack of sleep (69.6%), warm climate (68.6%) and video games (64.7%). Stress was also the most frequently reported migraine trigger always associated with attacks (24.5%). In conclusion, trigger factors were frequently reported by children and adolescents with migraine and stress was the most frequent

    Next-generation HLA typing of 382 International Histocompatibility Working Group reference B-lymphoblastoid cell lines: Report from the 17th International HLA and Immunogenetics Workshop

    Get PDF
    Extended molecular characterization of HLA genes in the IHWG reference B-lymphoblastoid cell lines (B-LCLs) was one of the major goals for the 17th International HLA and Immunogenetics Workshop (IHIW). Although reference B-LCLs have been examined extensively in previous workshops complete high-resolution typing was not completed for all the classical class I and class II HLA genes. To address this, we conducted a single-blind study where select panels of B-LCL genomic DNA samples were distributed to multiple laboratories for HLA genotyping by next-generation sequencing methods. Identical cell panels comprised of 24 and 346 samples were distributed and typed by at least four laboratories in order to derive accurate consensus HLA genotypes. Overall concordance rates calculated at both 2- and 4-field allele-level resolutions ranged from 90.4% to 100%. Concordance for the class I genes ranged from 91.7 to 100%, whereas concordance for class II genes was variable; the lowest observed at HLA-DRB3 (84.2%). At the maximum allele-resolution 78 B-LCLs were defined as homozygous for all 11 loci. We identified 11 novel exon polymorphisms in the entire cell panel. A comparison of the B-LCLs NGS HLA genotypes with the HLA genotypes catalogued in the IPD-IMGT/HLA Database Cell Repository, revealed an overall allele match at 68.4%. Typing discrepancies between the two datasets were mostly due to the lower-resolution historical typing methods resulting in incomplete HLA genotypes for some samples listed in the IPD-IMGT/HLA Database Cell Repository. Our approach of multiple-laboratory NGS HLA typing of the B-LCLs has provided accurate genotyping data. The data generated by the tremendous collaborative efforts of the 17th IHIW participants is useful for updating the current cell and sequence databases and will be a valuable resource for future studies
    corecore