759 research outputs found

    Conserved domains control heterochromatin localization and silencing properties of SU(VAR)3-7

    Get PDF
    The Drosophila protein SU(VAR)3-7 is essential for fly viability, chromosome structure, and heterochromatin formation. We report that searches in silico and in vitro for homologues of SU(VAR)3-7 were successful within, but not outside, the Drosophila genus. Protein sequence homology between the distant sibling species Drosophila melanogaster and Drosophila virilis is low, except for the general organization of the protein and three conserved motives: seven widely spaced zinc fingers in the N-terminal half and the BESS and BoxA motives in the C-terminal half of the protein. We have undertaken a fine functional dissection of SU(VAR)3-7 in vivo using transgenes encoding truncations of the protein. BESS mediates interaction of SU(VAR)3-7 with itself, and BoxA is required for specific heterochromatin association. Both are necessary for the silencing properties of SU(VAR)3-7. The seven zinc fingers, widely spaced over the N-terminal half of SU(VAR)3-7, are required for binding to polytene chromosomes. One finger is necessary and sufficient to determine the appropriate chromatin association of the C-terminal half of the protein. Conferring a function to each of the conserved motives allows us to better understand the mode of action of SU(VAR)3-7 in triggering heterochromatin formation and subsequent genomic silencin

    Dry Eye Post-Laser-Assisted In Situ Keratomileusis: Major Review and Latest Updates

    Get PDF
    Dry eye is one of the most common complications occurring after laser-assisted in situ keratomileusis (LASIK), with virtually all patients experiencing some degree of postoperative dry eye symptoms. Enhanced understanding of the pathophysiology and mechanism of dry eye development in addition to preoperative screening of patients who are prone to dry eye is essential for better patient satisfaction and for improving short-term visual outcome postoperatively. This article reviews the latest studies published on LASIK-associated dry eye, including epidemiology, pathophysiology, risk factors, preoperative assessment, and management

    The temporoparietal junction as a part of the "when" pathway.

    Get PDF

    State dependency of inhibitory control performance: an electrical neuroimaging study

    Get PDF
    Behavioral and brain responses to stimuli not only depend on their physical features but also on the individuals' neurocognitive states before stimuli onsets. While the influence of pre-stimulus fluctuations in brain activity on low-level perceptive processes is well established, the state dependency of high-order executive processes remains unclear. Using a classical inhibitory control Go/NoGo task, we examined whether and how fluctuations in the brain activity during the period preceding the stimuli triggering inhibition influenced inhibitory control performance. Seventeen participants completed the Go/NoGo task while 64-channel electroencephalogram was recorded. We compared the event-related potentials preceding the onset of the NoGo stimuli associated with inhibition failures false alarms (FA) vs. successful inhibition correct rejections (CR) with data-driven statistical analyses of global measures of the topography and strength of the scalp electric field. Distributed electrical source estimations were used to localize the origin of the event-related potentials modulations. We observed differences in the global field power of the event-related potentials (FA > CR) without concomitant topographic modulations over the 40 ms period immediately preceding NoGo stimuli. This result indicates that the same brain networks were engaged in the two conditions, but more strongly before FA than CR. Source estimations revealed that this effect followed from a higher activity before FA than CR within bilateral inferior frontal gyri and the right inferior parietal lobule. These findings suggest that uncontrolled quantitative variations in pre-stimulus activity within attentional and control brain networks influence inhibition performance. The present data thereby demonstrate the state dependency of cognitive processes of up to high- order executive levels

    State dependency of inhibitory control performance: an electrical neuroimaging study

    Get PDF
    Behavioral and brain responses to stimuli not only depend on their physical features but also on the individuals' neurocognitive states before stimuli onsets. While the influence of pre-stimulus fluctuations in brain activity on low-level perceptive processes is well established, the state dependency of high-order executive processes remains unclear. Using a classical inhibitory control Go/NoGo task, we examined whether and how fluctuations in the brain activity during the period preceding the stimuli triggering inhibition influenced inhibitory control performance. Seventeen participants completed the Go/NoGo task while 64-channel electroencephalogram was recorded. We compared the event-related potentials preceding the onset of the NoGo stimuli associated with inhibition failures false alarms (FA) vs. successful inhibition correct rejections (CR) with data-driven statistical analyses of global measures of the topography and strength of the scalp electric field. Distributed electrical source estimations were used to localize the origin of the event-related potentials modulations. We observed differences in the global field power of the event-related potentials (FA > CR) without concomitant topographic modulations over the 40 ms period immediately preceding NoGo stimuli. This result indicates that the same brain networks were engaged in the two conditions, but more strongly before FA than CR. Source estimations revealed that this effect followed from a higher activity before FA than CR within bilateral inferior frontal gyri and the right inferior parietal lobule. These findings suggest that uncontrolled quantitative variations in pre-stimulus activity within attentional and control brain networks influence inhibition performance. The present data thereby demonstrate the state dependency of cognitive processes of up to high- order executive levels

    Neural plasticity associated with recently versus often heard objects.

    Get PDF
    In natural settings the same sound source is often heard repeatedly, with variations in spectro-temporal and spatial characteristics. We investigated how such repetitions influence sound representations and in particular how auditory cortices keep track of recently vs. often heard objects. A set of 40 environmental sounds was presented twice, i.e. as prime and as repeat, while subjects categorized the corresponding sound sources as living vs. non-living. Electrical neuroimaging analyses were applied to auditory evoked potentials (AEPs) comparing primes vs. repeats (effect of presentation) and the four experimental sections. Dynamic analysis of distributed source estimations revealed i) a significant main effect of presentation within the left temporal convexity at 164-215ms post-stimulus onset; and ii) a significant main effect of section in the right temporo-parietal junction at 166-213ms. A 3-way repeated measures ANOVA (hemisphere×presentation×section) applied to neural activity of the above clusters during the common time window confirmed the specificity of the left hemisphere for the effect of presentation, but not that of the right hemisphere for the effect of section. In conclusion, spatio-temporal dynamics of neural activity encode the temporal history of exposure to sound objects. Rapidly occurring plastic changes within the semantic representations of the left hemisphere keep track of objects heard a few seconds before, independent of the more general sound exposure history. Progressively occurring and more long-lasting plastic changes occurring predominantly within right hemispheric networks, which are known to code for perceptual, semantic and spatial aspects of sound objects, keep track of multiple exposures

    Sumoylation of Drosophila SU(VAR)3-7 is required for its heterochromatic function

    Get PDF
    In Drosophila, SU(VAR)3-7 is an essential heterochromatin component. It is required for proper chromatin condensation, and changing its dose modifies position-effect variegation. Sumoylation is a post-translational modification shown to play a role in diverse biological processes. Here, we demonstrate that sumoylation is essential for proper heterochromatin function in Drosophila through modification of SU(VAR)3-7. Indeed, SU(VAR)3-7 is sumoylated at lysine K839; this modification is required for localization of SU(VAR)3-7 at pericentric heterochromatin, chromosome 4, and telomeres. In addition, sumoylation of SU(VAR)3-7 is a prerequisite for its ability to enhance position-effect variegation. Thus, these results show that the heterochromatic function of SU(VAR)3-7 depends on its own sumoylation, and unveil a role for sumoylation in Drosophila heterochromati

    Mental flexibility depends on a largely distributed white matter network: Causal evidence from connectome-based lesion-symptom mapping.

    Get PDF
    Mental flexibility (MF) refers to the capacity to dynamically switch from one task to another. Current neurocognitive models suggest that since this function requires interactions between multiple remote brain areas, the integrity of the anatomic tracts connecting these brain areas is necessary to maintain performance. We tested this hypothesis by assessing with a connectome-based lesion-symptom mapping approach the effects of white matter lesions on the brain's structural connectome and their association with performance on the trail making test, a neuropsychological test of MF, in a sample of 167 first unilateral stroke patients. We found associations between MF deficits and damage of i) left lateralized fronto-temporo-parietal connections and interhemispheric connections between left temporo-parietal and right parietal areas; ii) left cortico-basal connections; and iii) left cortico-pontine connections. We further identified a relationship between MF and white matter disconnections within cortical areas composing the cognitive control, default mode and attention functional networks. These results for a central role of white matter integrity in MF extend current literature by providing causal evidence for a functional interdependence among the regional cortical and subcortical structures composing the MF network. Our results further emphasize the necessity to consider connectomics in lesion-symptom mapping analyses to establish comprehensive neurocognitive models of high-order cognitive functions
    corecore