1,146 research outputs found

    Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1α : modulation by p38 MAPK

    Get PDF
    The transcriptional coactivator PPAR gamma coactivator 1 α (PGC-1α) is a key regulator of metabolic processes such as mitochondrial biogenesis and respiration in muscle and gluconeogenesis in liver. Reduced levels of PGC-1α in humans have been associated with type II diabetes. PGC-1α contains a negative regulatory domain that attenuates its transcriptional activity. This negative regulation is removed by phosphorylation of PGC-1α by p38 MAPK, an important kinase downstream of cytokine signaling in muscle and ÎČ-adrenergic signaling in brown fat. We describe here the identification of p160 myb binding protein (p160MBP) as a repressor of PGC-1α. The binding and repression of PGC-1α by p160MBP is disrupted by p38 MAPK phosphorylation of PGC-1α. Adenoviral expression of p160MBP in myoblasts strongly reduces PGC-1α's ability to stimulate mitochondrial respiration and the expression of the genes of the electron transport system. This repression does not require removal of PGC-1α from chromatin, suggesting that p160MBP is or recruits a direct transcriptional suppressor. Overall, these data indicate that p160MBP is a powerful negative regulator of PGC-1α function and provide a molecular mechanism for the activation of PGC-1α by p38 MAPK. The discovery of p160MBP as a PGC-1α regulator has important implications for the understanding of energy balance and diabetes

    Wetting to Non-wetting Transition in Sodium-Coated C_60

    Full text link
    Based on ab initi and density-functional theory calculations, an empirical potential is proposed to model the interaction between a fullerene molecule and many sodium atoms. This model predicts homogeneous coverage of C_60 below 8 Na atoms, and a progressive droplet formation above this size. The effects of ionization, temperature, and external electric field indicate that the various, and apparently contradictory, experimental results can indeed be put into agreement.Comment: 4 pages, 4 postscript figure

    Combined impact of lifestyle factors on mortality: prospective cohort study in US women

    Get PDF
    Objective To evaluate the impact of combinations of lifestyle factors on mortality in middle aged women

    Partnership of PGC-1α and HNF4α in the regulation of lipoprotein metabolism

    Get PDF
    Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is a transcriptional coactivator involved in several aspects of energy metabolism. It is induced or activated under different stimuli in a highly tissue-specific manner and subsequently partners with certain transcription factors in those tissues to execute various biological programs. In the fasted liver, PGC-1α is induced and interacts with hepatocyte nuclear factor 4α (HNF4α) and other transcription factors to activate gluconeogenesis and increase hepatic glucose output. Given the broad spectrum of liver genes responsive to HNF4α, we sought to determine those that were specifically targeted by the combination of PGC-1α and HNF4α. Coexpression of these two molecules in murine stem cells reveals a high induction of mRNA for apolipoproteins A-IV and C-II. Forced expression of PGC-1α in mouse and human hepatoma cells increases the mRNA of a subset of apolipoproteins implicated in very low density lipoprotein and triglyceride metabolism, including apolipoproteins A-IV, C-II, and C-III. Coactivation of the apoC-III/A-IV promoter region by PGC-1α occurs through a highly conserved HNF4α response element, the loss of which completely abolishes activation by PGC-1α and HNF4α. Adenoviral infusion of PGC-1α into live mice increases hepatic expression of apolipoproteins A-IV, C-II, and C-III and increases serum and very low density lipoprotein triglyceride levels. Conversely, knock down of PGC-1α in vivo causes a decrease in both apolipoprotein expression and serum triglyceride levels. These data point to a crucial role for the PGC-1α/HNF4α partnership in hepatic lipoprotein metabolism

    Transition State Spectroscopy of the Photoinduced Ca + CH3F Reaction. 2. Experimental and Ab Initio Studies of the Free Ca***FCH3 Complex

    Get PDF
    International audienceThe Ca* + CH3F CaF* + CH3 reaction was photoinduced in 1:1 Ca***CH3F complexes formed in a supersonic expansion. The transition state of the reaction was explored by monitoring the electronically excited product, CaF, while scanning the laser that turns on the reaction. Moreover, the electronic structure of the Ca***FCH3 system was studied using ab initio methods by associating a pseudopotential description of the [Ca2+] and [F7+] cores, a core polarization operator on calcium, an extensive Gaussian basis and a treatment of the electronic problem at the CCSD(T) (ground state) and RSPT2 (excited states) level. In this contribution we present experimental results for the free complex and a comparison with the results of a previous experiment where the Ca***CH3F complexes are deposited at the surface of large argon clusters. The ab initio calculations allowed an interpretation of the experimental data in terms of two reaction mechanisms, one involving a partial charge transfer state, the other involving the excitation of the C-F stretch in the CH3F moiety prior to charge transfer

    Degenerate dispersive equations arising in the study of magma dynamics

    Full text link
    An outstanding problem in Earth science is understanding the method of transport of magma in the Earth's mantle. Models for this process, transport in a viscously deformable porous media, give rise to scalar degenerate, dispersive, nonlinear wave equations. We establish a general local well-posedness for a physical class of data (roughly H1H^1) via fixed point methods. The strategy requires positive lower bounds on the solution. This is extended to global existence for a subset of possible nonlinearities by making use of certain conservation laws associated with the equations. Furthermore, we construct a Lyapunov energy functional, which is locally convex about the uniform state, and prove (global in time) nonlinear dynamic stability of the uniform state for any choice of nonlinearity. We compare the dynamics to that of other problems and discuss open questions concerning a larger range of nonlinearities, for which we conjecture global existence.Comment: 27 Pages, 7 figures are not present in this version. See http://www.columbia.edu/~grs2103/ for a PDF with figures. Submitted to Nonlinearit
    • 

    corecore