3,125 research outputs found

    On the theory of coronal heating mechanisms

    Get PDF
    Theoretical models describing solar coronal heating mechanisms are reviewed in some detail. The requirements of chromospheric and coronal heating are discussed in the context of the fundamental constraints encountered in modelling the outer solar atmosphere. Heating by acoustic processes in the 'nonmagnetic' parts of the atmosphere is examined with particular emphasis on the shock wave theory. Also discussed are theories of heating by electrodynamic processes in the magnetic regions of the corona, either magnetohydrodynamic waves or current heating in the regions with large electric current densities (flare type heating). Problems associated with each of the models are addressed

    The Dynamic Formation of Prominence Condensations

    Full text link
    We present simulations of a model for the formation of a prominence condensation in a coronal loop. The key idea behind the model is that the spatial localization of loop heating near the chromosphere leads to a catastrophic cooling in the corona (Antiochos & Klimchuk 1991). Using a new adaptive grid code, we simulate the complete growth of a condensation, and find that after approx. 5,000 s it reaches a quasi-steady state. We show that the size and the growth time of the condensation are in good agreement with data, and discuss the implications of the model for coronal heating and SOHO/TRACE observations.Comment: Astrophysical Journal latex file, 20 pages, 7 b-w figures (gif files

    Singling out the double effect - some further comment.

    Get PDF
    We comment on a paper published in the same issue of the London Journal of Primary Care. We applaud Bow's engagement with the ethical issues in a previous LJPC paper but argue that further work is needed to establish the everyday moral concerns of health care workers in primary care. We also suggest that the ethical distinction between advice and medication and devices may be artificial if both have an effect on a patient

    Immunohistochemical Demonstration of IgG in Reed-Sternberg and Other Cells in Hodgkin\u27s Disease

    Get PDF
    Increased synthesis of IgG in vitro has been demonstrated in spleens from patients with Hodgkin\u27s disease, either with or without invasion of the organ by tumor (1). Interest in this laboratory has centered recently on cytochemical localization of immunoglobulins by means of an immunoglobulin-peroxidase bridge procedure (2) and a satisfactory method has been developed for selectively visualizing immunocytes with this technique. 1 As a means of assessing the basis for increased IgG biosynthesis in spleens of Hodgkin patients, this immunostaining procedure has been applied to localization of IgG-producing cells in specimens with Hodgkin\u27s disease

    Impulsive phase flare energy transport by large-scale Alfven waves and the electron acceleration problem

    Full text link
    The impulsive phase of a solar flare marks the epoch of rapid conversion of energy stored in the pre-flare coronal magnetic field. Hard X-ray observations imply that a substantial fraction of flare energy released during the impulsive phase is converted to the kinetic energy of mildly relativistic electrons (10-100 keV). The liberation of the magnetic free energy can occur as the coronal magnetic field reconfigures and relaxes following reconnection. We investigate a scenario in which products of the reconfiguration - large-scale Alfven wave pulses - transport the energy and magnetic-field changes rapidly through the corona to the lower atmosphere. This offers two possibilities for electron acceleration. Firstly, in a coronal plasma with beta < m_e/m_p, the waves propagate as inertial Alfven waves. In the presence of strong spatial gradients, these generate field-aligned electric fields that can accelerate electrons to energies on the order of 10 keV and above, including by repeated interactions between electrons and wavefronts. Secondly, when they reflect and mode-convert in the chromosphere, a cascade to high wavenumbers may develop. This will also accelerate electrons by turbulence, in a medium with a locally high electron number density. This concept, which bridges MHD-based and particle-based views of a flare, provides an interpretation of the recently-observed rapid variations of the line-of-sight component of the photospheric magnetic field across the flare impulsive phase, and offers solutions to some perplexing flare problems, such as the flare "number problem" of finding and resupplying sufficient electrons to explain the impulsive-phase hard X-ray emission.Comment: 31 pages, 6 figure

    Future possibilities in the prevention of breast cancer: Luteinizing hormone-releasing hormone agonists

    Get PDF
    The cyclic production of estrogen and progesterone by the premenopausal ovary accounts for the steep rise in breast cancer risk in premenopausal women. These hormones are breast cell mitogens. By reducing exposure to these ovarian hormones, agonists of luteinizing hormone-releasing hormone (LHRH) given to suppress ovarian function may prove useful in cancer prevention. To prevent deleterious effects of hypoestrogenemia, the addition of low-dose hormone replacement to the LHRH agonist appears necessary. Pilot data with such an approach indicates it is feasible and reduces mammographic densities
    • …
    corecore