114 research outputs found

    A clay-shoveler's fracture with renal transplantation and osteoporosis: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Clay-shoveler's fracture is a rare cervicodorsal spinous process fracture and there is little information regarding the prognosis of patients with this condition in conjunction with osteoporosis and corticosteroid use.</p> <p>Case presentation</p> <p>A 39-year-old man was admitted to our institution with a 6-month history of cervicodorsal pain prior to admission. The patient had previously undergone renal transplantation and was on corticosteroids, and had developed osteoporosis. We treated him with a cervical collar, non-steroidal anti-inflammatory agents and alendronate. The patient was advised against performing weight-bearing activities for 6 months.</p> <p>Conclusion</p> <p>Clay-shoveler's fracture with osteoporosis and corticosteroid use presented by fracture of the cervicodorsal aspect of the spinous processes may be successfully treated with a collar, alendronate and long-term rest.</p

    Genomics accelerated isolation of a new stem rust avirulence gene - wheat resistance gene pair

    Get PDF
    Stem rust caused by the fungus Puccinia graminis f. sp. tritici (Pgt) is a devastating disease of the global staple crop wheat. Although this disease was largely controlled by genetic resistance in the latter half of the 20th century, new strains of Pgt with increased virulence, such as Ug99, have evolved by somatic hybridisation and mutation. These newly emerged strains have caused significant losses in Africa and other regions and their continued spread threatens global wheat production. Breeding for disease resistance provides the most cost-effective control of wheat rust diseases. A number of race-specific rust resistance genes have been characterised in wheat and most encode immune receptors of the nucleotide-binding leucine-rich repeat (NLR) class. These receptors recognize pathogen effector proteins often known as avirulence (Avr) proteins. However, only two Avr genes have been identified in Pgt to date, AvrSr35 and AvrSr50 and none in other cereal rusts, which hinders efforts to understand the evolution of virulence in rust populations. The Sr27 resistance gene was first identified in a wheat line carrying an introgression of the 3R chromosome from Imperial rye. Although not deployed widely in wheat, Sr27 is widespread in the artificial crop species Triticosecale (triticale) which is a wheat-rye hybrid and is a host for Pgt. Sr27 is effective against Ug99 and other recently emerged Pgt strains. Here we identify both the Sr27 gene in wheat and the corresponding AvrSr27 gene in Pgt and show that virulence to Sr27 can arise experimentally and in the field through deletion mutations, copy number variation and expression level polymorphisms at the AvrSr27 locus

    Annexin A2 Binds RNA and Reduces the Frameshifting Efficiency of Infectious Bronchitis Virus

    Get PDF
    Annexin A2 (ANXA2) is a protein implicated in diverse cellular functions, including exocytosis, DNA synthesis and cell proliferation. It was recently proposed to be involved in RNA metabolism because it was shown to associate with some cellular mRNA. Here, we identified ANXA2 as a RNA binding protein (RBP) that binds IBV (Infectious Bronchitis Virus) pseudoknot RNA. We first confirmed the binding of ANXA2 to IBV pseudoknot RNA by ultraviolet crosslinking and showed its binding to RNA pseudoknot with ANXA2 protein in vitro and in the cells. Since the RNA pseudoknot located in the frameshifting region of IBV was used as bait for cellular RBPs, we tested whether ANXA2 could regulate the frameshfting of IBV pseudoknot RNA by dual luciferase assay. Overexpression of ANXA2 significantly reduced the frameshifting efficiency from IBV pseudoknot RNA and knockdown of the protein strikingly increased the frameshifting efficiency. The results suggest that ANXA2 is a cellular RBP that can modulate the frameshifting efficiency of viral RNA, enabling it to act as an anti-viral cellular protein, and hinting at roles in RNA metabolism for other cellular mRNAs

    Using virulence mutants to identify Avr genes in the wheat stem rust fungus, Puccinia graminis f. sp. tritici

    Get PDF
    The wheat stem rust fungus Puccinia graminis f. sp. tritici (Pgt) is one of the most destructive pathogens of wheat. Resistance of host lines is often governed by recognition of fungal effector proteins (avirulence/virulence proteins) by plant resistance proteins (R proteins). We have taken a mutational genomics approach to identify Avr genes in Pgt. We isolated spontaneous mutants with virulence for Sr50, Sr5, Sr27, Sr21 or Sr45 by selection on resistant host lines. Sequence analysis of the Sr50 virulent mutant revealed that virulence resulted from the exchange of a whole chromosome between the two haploid nuclei of this dikaryotic organism, resulting in loss of the avirulence allele. This confirms the important role of somatic exchange events in virulence evolution in Pgt. The AvrSr50 gene was identified from the 25 candidate effector genes from this chromosome by transient co-expression with the cloned Sr50 gene in N. benthamiana. AvrSr50 recognition was confirmed in wheat by viral expression. Recognition of the AvrSr50 protein by the host Sr50 immune receptor is based on direct interaction and we have identified critical amino acid polymorphisms contributing to the escape from recognition in virulent isolates. Identification of AvrSr50 has enabled development of tools for testing effector function in wheat including viral overexpression and wheat protoplast transient expression assays. Spontaneous mutants for several other Avr loci have also been sequenced and a new Pacbio-based genome assembly for the Australian parental Pgt isolate has facilitated the delineation of these loci. Three mutants with virulence for Sr27 contain overlapping deletions and a single candidate gene for AvrSr27 has been identified. Likewise, AvrSr5 mutants contain large deletions spanning several candidate effector genes

    Characterisation of pathogen-specific regions and novel effector candidates in Fusarium oxysporum f. sp. cepae

    Get PDF
    A reference-quality assembly of Fusarium oxysporum f. sp. cepae (Foc), the causative agent of onion basal rot has been generated along with genomes of additional pathogenic and non-pathogenic isolates of onion. Phylogenetic analysis confirmed a single origin of the Foc pathogenic lineage. Genome alignments with other F. oxysporum ff. spp. and non pathogens revealed high levels of syntenic conservation of core chromosomes but little synteny between lineage specific (LS) chromosomes. Four LS contigs in Foc totaling 3.9 Mb were designated as pathogen-specific (PS). A two-fold increase in segmental duplication events was observed between LS regions of the genome compared to within core regions or from LS regions to the core. RNA-seq expression studies identified candidate effectors expressed in planta, consisting of both known effector homologs and novel candidates. FTF1 and a subset of other transcription factors implicated in regulation of effector expression were found to be expressed in planta

    Genome sequencing and comparative genomics of the broad host-range pathogen Rhizoctonia solani AG8

    Get PDF
    Rhizoctonia solani is a soil-borne basidiomycete fungus with a necrotrophic lifestyle which is classified into fourteen reproductively incompatible anastomosis groups (AGs). One of these, AG8, is a devastating pathogen causing bare patch of cereals, brassicas and legumes. R. solani is a multinucleate heterokaryon containing significant heterozygosity within a single cell. This complexity posed significant challenges for the assembly of its genome. We present a high quality genome assembly of R. solani AG8 and a manually curated set of 13,964 genes supported by RNA-seq. The AG8 genome assembly used novel methods to produce a haploid representation of its heterokaryotic state. The whole-genomes of AG8, the rice pathogen AG1-IA and the potato pathogen AG3 were observed to be syntenic and co-linear. Genes and functions putatively relevant to pathogenicity were highlighted by comparing AG8 to known pathogenicity genes, orthology databases spanning 197 phytopathogenic taxa and AG1-IA.We also observed SNP-level “hypermutation” of CpG dinucleotides to TpG between AG8 nuclei, with similarities to repeat-induced point mutation (RIP). Interestingly, gene-coding regions were widely affected along with repetitive DNA, which has not been previously observed for RIP in mononuclear fungi of the Pezizomycotina. The rate of heterozygous SNP mutations within this single isolate of AG8 was observed to be higher than SNP mutation rates observed across populations of most fungal species compared. Comparative analyses were combined to predict biological processes relevant to AG8 and 308 proteins with effector-like characteristics, forming a valuable resource for further study of this pathosystem. Predicted effector-like proteins had elevated levels of non-synonymous point mutations relative to synonymous mutations (dN/dS), suggesting that they may be under diversifying selection pressures. In addition, the distant relationship to sequenced necrotrophs of the Ascomycota suggests the R. solani genome sequence may prove to be a useful resource in future comparative analysis of plant pathogens
    corecore