3,328 research outputs found

    What the Bible is Really About: Decoding the Torah

    Get PDF
    Professor of Bible, Hebrew Union College-Jewish Institute of Religion, NYC; Author of The Original Torah: The Political Intent of the Bible\u27s Writers.https://digitalcommons.fairfield.edu/bennettcenter-posters/1194/thumbnail.jp

    Convex ordering and quantification of quantumness

    Full text link
    The characterization of physical systems requires a comprehensive understanding of quantum effects. One aspect is a proper quantification of the strength of such quantum phenomena. Here, a general convex ordering of quantum states will be introduced which is based on the algebraic definition of classical states. This definition resolves the ambiguity of the quantumness quantification using topological distance measures. Classical operations on quantum states will be considered to further generalize the ordering prescription. Our technique can be used for a natural and unambiguous quantification of general quantum properties whose classical reference has a convex structure. We apply this method to typical scenarios in quantum optics and quantum information theory to study measures which are based on the fundamental quantum superposition principle.Comment: 9 pages, 2 figures, revised version; published in special issue "150 years of Margarita and Vladimir Man'ko

    Benchmarking of Gaussian boson sampling using two-point correlators

    Get PDF
    Gaussian boson sampling is a promising scheme for demonstrating a quantum computational advantage using photonic states that are accessible in a laboratory and, thus, offer scalable sources of quantum light. In this contribution, we study two-point photon-number correlation functions to gain insight into the interference of Gaussian states in optical networks. We investigate the characteristic features of statistical signatures which enable us to distinguish classical from quantum interference. In contrast to the typical implementation of boson sampling, we find additional contributions to the correlators under study which stem from the phase dependence of Gaussian states and which are not observable when Fock states interfere. Using the first three moments, we formulate the tools required to experimentally observe signatures of quantum interference of Gaussian states using two outputs only. By considering the current architectural limitations in realistic experiments, we further show that a statistically significant discrimination between quantum and classical interference is possible even in the presence of loss, noise, and a finite photon-number resolution. Therefore, we formulate and apply a theoretical framework to benchmark the quantum features of Gaussian boson sampling under realistic conditions

    True photo-counting statistics of multiple on-off detectors

    Full text link
    We derive a closed photo-counting formula, including noise counts and a finite quantum efficiency, for photon number resolving detectors based on on-off detectors. It applies to detection schemes such as array detectors and multiplexing setups. The result renders it possible to compare the corresponding measured counting statistics with the true photon number statistics of arbitrary quantum states. The photo-counting formula is applied to the discrimination of photon numbers of Fock states, squeezed states, and odd coherent states. It is illustrated for coherent states that our formula is indispensable for the correct interpretation of quantum effects observed with such devices.Comment: 7 pages, 4 figure

    Strongly entangled light from planar microcavities

    Full text link
    The emission of entangled light from planar semiconductor microcavities is studied and the entanglement properties are analyzed and quantified. Phase-matching of the intra-cavity scattering dynamics for multiple pump beams or pulses, together with the coupling to external radiation, leads to the emission of a manifold of entangled photon pairs. A decomposition of the emitted photons into two parties leads to a strong entanglement of the resulting bipartite system. For the quantification of the entanglement, the Schmidt number of the system is determined by the construction of Schmidt number witnesses. It is analyzed to which extend the resources of the originally strongly entangled light field are diminished by dephasing in propagation channels.Comment: 9 pages, 5 figures, extended versio

    Limitations for change detection in multiple Gabor targets

    Get PDF
    We investigate the limitations on the ability to detect when a target has changed, using Gabor targets as simple quantifiable stimuli. Using a partial report technique to equalise response variables, we show that the log of the Weber fraction for detecting a spatial frequency change is proportional to the log of the number of targets, with a set-size effect that is greater than that reported for visual search. This is not a simple perceptual limitation, because pre-cueing a single target out of four restores performance to the level found when only one target is present. It is argued that the primary limitation on performance is the division of attention across multiple targets, rather than decay within visual memory. However in a simplified change detection experiment without cueing, where only one target of the set changed, not only was the set size effect still larger, but it was greater at 2000 msec ISI than at 250 msec ISI, indicating a possible memory component. The steepness of the set size effects obtained suggests that even moderate complexity of a stimulus in terms of number of component objects can overload attentional processes, suggesting a possible low-level mechanism for change blindness
    • …
    corecore