6 research outputs found

    New methods for the comprehensive analysis of bioactive compounds in Cannabis sativa L. (hemp)

    Get PDF
    Cannabis sativa L. is a dioecious plant belonging to the Cannabaceae family. The main phytochemicals that are found in this plant are represented by cannabinoids, flavones, and terpenes. Some biological activities of cannabinoids are known to be enhanced by the presence of terpenes and flavonoids in the extracts, due to a synergistic action. In the light of all the above, the present study was aimed at the multi-component analysis of the bioactive compounds present in fibre-type C. sativa (hemp) inflorescences of different varieties by means of innovative HPLC and GC methods. In particular, the profiling of non-psychoactive cannabinoids was carried out by means of HPLC-UV/DAD, ESI-MS, and MS2. The content of prenylated flavones in hemp extracts, including cannflavins A and B, was also evaluated by HPLC. The study on Cannabis volatile compounds was performed by developing a new method based on headspace solid-phase microextraction (HS-SPME) coupled with GC-MS and GC-FID. Cannabidiolic acid (CBDA) and cannabidiol (CBD) were found to be the most abundant cannabinoids in the hemp samples analysed, while f-myrcene and f-caryophyllene were the major terpenes. As regards flavonoids, cannflavin A was observed to be the main compound in almost all the samples. The methods developed in this work are suitable for the comprehensive chemical analysis of both hemp plant material and related pharmaceutical or nutraceutical products in order to ensure their quality, efficacy, and safety

    Use of 13C-qNMR Spectroscopy for the Analysis of Non-Psychoactive Cannabinoids in Fibre-Type Cannabis sativa L. (Hemp)

    No full text
    Cannabis sativa L. is a dioecious plant belonging to the Cannabaceae family. The discovery of the presence of many biologically-active metabolites (cannabinoids) in fibre-type Cannabis (hemp) has recently given rise to the valorisation of this variety. In this context, the present study was aimed at the multi-component analysis and determination of the main non-psychoactive cannabinoids (cannabidiol, cannabidiolic acid, cannabigerol and cannabigerolic acid) in female inflorescences of different hemp varieties by means of 13C quantitative nuclear magnetic resonance spectroscopy (qNMR). The method proposed here for the first time for the determination of cannabinoids provided reliable results in a competitive time with respect to the more consolidated HPLC technique. In fact, it gave sufficiently precise and sensitive results, with LOQ values lower than 750 \ub5g/mL, which is easily achievable with concentrated extracts, without affecting the quality of 13C-qNMR spectra. In conclusion, this method can be considered as a promising and appropriate tool for the comprehensive chemical analysis of bioactive cannabinoids in hemp and other derived products in order to ensure their quality, efficacy and safety

    Year-Long Microbial Succession on Microplastics in Wastewater: Chaotic Dynamics Outweigh Preferential Growth

    No full text
    Microplastics are a globally-ubiquitous aquatic pollutant and have been heavily studied over the last decade. Of particular interest are the interactions between microplastics and microorganisms, especially the pursuit to discover a plastic-specific biome, the so-called plastisphere. To follow this up, a year-long microcosm experimental setup was deployed to expose five different microplastic types (and silica beads control) to activated aerobic wastewater in controlled conditions, with microbial communities being measured four times over the course of the year using 16S rDNA (bacterial) and ITS (fungal) amplicon sequencing. The biofilm community shows no evidence of a specific plastisphere, even after a year of incubation. Indeed, the microbial communities (particularly bacterial) show a clear trend of increasing dissimilarity between plastic types as time increases. Despite little evidence for a plastic-specific community, there was a slight grouping observed for polyolefins (PE and PP) in 6–12-month biofilms. Additionally, an OTU assigned to the genus Devosia was identified on many plastics, increasing over time while showing no growth on silicate (natural particle) controls, suggesting this could be either a slow-growing plastic-specific taxon or a symbiont to such. Both substrate-associated findings were only possible to observe in samples incubated for 6–12 months, which highlights the importance of studying long-term microbial community dynamics on plastic surfaces

    Control of Vibrio vulnificus proliferation in the Baltic Sea through eutrophication and algal bloom management

    No full text
    Due to climate change the pathogenic bacterium Vibrio vulnificus proliferates along brackish coastlines, posing risks to public health, tourism, and aquaculture. Here we investigated previously suggested regulation measures to reduce the prevalence of V. vulnificus, locally through seagrass and regionally through the reduction of eutrophication and consequential formation of algal blooms. Field samples collected in the summer of 2021 covered the salinity and eutrophication gradients of the Baltic Sea, one of the largest brackish areas worldwide. Physico-, biological- and hydrochemical parameters were measured and variables explaining V. vulnificus occurrence were identified by machine learning. The best V. vulnificus predictors were eutrophication-related features, such as particulate organic carbon and nitrogen, as well as occurrence of potential phytoplankton blooms and associated species. V. vulnificus abundance did not vary significantly between vegetated and non-vegetated areas. Thus, reducing nutrient inputs could be an effective method to control V. vulnificus populations in eutrophied brackish coasts
    corecore