158 research outputs found
Quantum gravitational contributions to quantum electrodynamics
Quantum electrodynamics describes the interactions of electrons and photons.
Electric charge (the gauge coupling constant) is energy dependent, and there is
a previous claim that charge is affected by gravity (described by general
relativity) with the implication that the charge is reduced at high energies.
But that claim has been very controversial with the situation inconclusive.
Here I report an analysis (free from earlier controversies) demonstrating that
that quantum gravity corrections to quantum electrodynamics have a quadratic
energy dependence that result in the reduction of the electric charge at high
energies, a result known as asymptotic freedom.Comment: To be published in Nature. 19 pages LaTeX, no figure
Semi-analytical approach to magnetized temperature autocorrelations
The cosmic microwave background (CMB) temperature autocorrelations, induced
by a magnetized adiabatic mode of curvature inhomogeneities, are computed with
semi-analytical methods. As suggested by the latest CMB data, a nearly
scale-invariant spectrum for the adiabatic mode is consistently assumed. In
this situation, the effects of a fully inhomogeneous magnetic field are
scrutinized and constrained with particular attention to harmonics which are
relevant for the region of Doppler oscillations. Depending on the parameters of
the stochastic magnetic field a hump may replace the second peak of the angular
power spectrum. Detectable effects on the Doppler region are then expected only
if the magnetic power spectra have quasi-flat slopes and typical amplitude
(smoothed over a comoving scale of Mpc size and redshifted to the epoch of
gravitational collapse of the protogalaxy) exceeding 0.1 nG. If the magnetic
energy spectra are bluer (i.e. steeper in frequency) the allowed value of the
smoothed amplitude becomes, comparatively, larger (in the range of 20 nG). The
implications of this investigation for the origin of large-scale magnetic
fields in the Universe are discussed. Connections with forthcoming experimental
observations of CMB temperature fluctuations are also suggested and partially
explored.Comment: 40 pages, 13 figure
The Cosmological Constant
This is a review of the physics and cosmology of the cosmological constant.
Focusing on recent developments, I present a pedagogical overview of cosmology
in the presence of a cosmological constant, observational constraints on its
magnitude, and the physics of a small (and potentially nonzero) vacuum energy.Comment: 50 pages. Submitted to Living Reviews in Relativity
(http://www.livingreviews.org/), December 199
The Hubble Constant
I review the current state of determinations of the Hubble constant, which
gives the length scale of the Universe by relating the expansion velocity of
objects to their distance. There are two broad categories of measurements. The
first uses individual astrophysical objects which have some property that
allows their intrinsic luminosity or size to be determined, or allows the
determination of their distance by geometric means. The second category
comprises the use of all-sky cosmic microwave background, or correlations
between large samples of galaxies, to determine information about the geometry
of the Universe and hence the Hubble constant, typically in a combination with
other cosmological parameters. Many, but not all, object-based measurements
give values of around 72-74km/s/Mpc , with typical errors of 2-3km/s/Mpc.
This is in mild discrepancy with CMB-based measurements, in particular those
from the Planck satellite, which give values of 67-68km/s/Mpc and typical
errors of 1-2km/s/Mpc. The size of the remaining systematics indicate that
accuracy rather than precision is the remaining problem in a good determination
of the Hubble constant. Whether a discrepancy exists, and whether new physics
is needed to resolve it, depends on details of the systematics of the
object-based methods, and also on the assumptions about other cosmological
parameters and which datasets are combined in the case of the all-sky methods.Comment: Extensively revised and updated since the 2007 version: accepted by
Living Reviews in Relativity as a major (2014) update of LRR 10, 4, 200
A Method for Rapid Demineralization of Teeth and Bones
Tooth and bone specimen require extensive demineralization for careful analysis of cell morphology, as well as gene and protein expression levels. The LacZ gene, which encodes the ß-galactosidase enzyme, is often used as a reporter gene to study gene-structure function, tissue-specific expression by a promoter, cell lineage and fate. This reporter gene is particularly useful for analyzing the spatial and temporal gene expression pattern, by expressing the LacZ gene under the control of a promoter of interest. To analyze LacZ activity, and the expression of other genes and their protein products in teeth and bones, it is necessary to carry out a complete demineralization of the specimen before cutting sections. However, strong acids, such as formic acid used for tooth demineralization, destroy the activities of enzymes including those of ß-galactosidase. Therefore, most protocols currently use mild acids such as 0.1 M ethylene diamine tetra-acetic acid (EDTA) for demineralization of tooth and bone specimen, which require a longer period of treatment for complete demineralization. A method by which hard tissue specimens such as teeth and bones can be rapidly, but gently, decalcified is necessary to save time and effort. Here, we report a suitable method for rapid demineralization of mouse teeth in 0.1M EDTA at 42˚C without any loss of ß-galactosidase activity
Cluster Lenses
Clusters of galaxies are the most recently assembled, massive, bound
structures in the Universe. As predicted by General Relativity, given their
masses, clusters strongly deform space-time in their vicinity. Clusters act as
some of the most powerful gravitational lenses in the Universe. Light rays
traversing through clusters from distant sources are hence deflected, and the
resulting images of these distant objects therefore appear distorted and
magnified. Lensing by clusters occurs in two regimes, each with unique
observational signatures. The strong lensing regime is characterized by effects
readily seen by eye, namely, the production of giant arcs, multiple-images, and
arclets. The weak lensing regime is characterized by small deformations in the
shapes of background galaxies only detectable statistically. Cluster lenses
have been exploited successfully to address several important current questions
in cosmology: (i) the study of the lens(es) - understanding cluster mass
distributions and issues pertaining to cluster formation and evolution, as well
as constraining the nature of dark matter; (ii) the study of the lensed objects
- probing the properties of the background lensed galaxy population - which is
statistically at higher redshifts and of lower intrinsic luminosity thus
enabling the probing of galaxy formation at the earliest times right up to the
Dark Ages; and (iii) the study of the geometry of the Universe - as the
strength of lensing depends on the ratios of angular diameter distances between
the lens, source and observer, lens deflections are sensitive to the value of
cosmological parameters and offer a powerful geometric tool to probe Dark
Energy. In this review, we present the basics of cluster lensing and provide a
current status report of the field.Comment: About 120 pages - Published in Open Access at:
http://www.springerlink.com/content/j183018170485723/ . arXiv admin note:
text overlap with arXiv:astro-ph/0504478 and arXiv:1003.3674 by other author
The stellar halo of the Galaxy
Stellar halos may hold some of the best preserved fossils of the formation
history of galaxies. They are a natural product of the merging processes that
probably take place during the assembly of a galaxy, and hence may well be the
most ubiquitous component of galaxies, independently of their Hubble type. This
review focuses on our current understanding of the spatial structure, the
kinematics and chemistry of halo stars in the Milky Way. In recent years, we
have experienced a change in paradigm thanks to the discovery of large amounts
of substructure, especially in the outer halo. I discuss the implications of
the currently available observational constraints and fold them into several
possible formation scenarios. Unraveling the formation of the Galactic halo
will be possible in the near future through a combination of large wide field
photometric and spectroscopic surveys, and especially in the era of Gaia.Comment: 46 pages, 16 figures. References updated and some minor changes.
Full-resolution version available at
http://www.astro.rug.nl/~ahelmi/stellar-halo-review.pd
f(R) theories
Over the past decade, f(R) theories have been extensively studied as one of
the simplest modifications to General Relativity. In this article we review
various applications of f(R) theories to cosmology and gravity - such as
inflation, dark energy, local gravity constraints, cosmological perturbations,
and spherically symmetric solutions in weak and strong gravitational
backgrounds. We present a number of ways to distinguish those theories from
General Relativity observationally and experimentally. We also discuss the
extension to other modified gravity theories such as Brans-Dicke theory and
Gauss-Bonnet gravity, and address models that can satisfy both cosmological and
local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in
Relativity, Published version, Comments are welcom
The Pioneer Anomaly
Radio-metric Doppler tracking data received from the Pioneer 10 and 11
spacecraft from heliocentric distances of 20-70 AU has consistently indicated
the presence of a small, anomalous, blue-shifted frequency drift uniformly
changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was
interpreted as a constant sunward deceleration of each particular spacecraft at
the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of
the Newton's gravitational inverse-square law has become known as the Pioneer
anomaly; the nature of this anomaly remains unexplained. In this review, we
summarize the current knowledge of the physical properties of the anomaly and
the conditions that led to its detection and characterization. We review
various mechanisms proposed to explain the anomaly and discuss the current
state of efforts to determine its nature. A comprehensive new investigation of
the anomalous behavior of the two Pioneers has begun recently. The new efforts
rely on the much-extended set of radio-metric Doppler data for both spacecraft
in conjunction with the newly available complete record of their telemetry
files and a large archive of original project documentation. As the new study
is yet to report its findings, this review provides the necessary background
for the new results to appear in the near future. In particular, we provide a
significant amount of information on the design, operations and behavior of the
two Pioneers during their entire missions, including descriptions of various
data formats and techniques used for their navigation and radio-science data
analysis. As most of this information was recovered relatively recently, it was
not used in the previous studies of the Pioneer anomaly, but it is critical for
the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living
Reviews in Relativit
- …