4,008 research outputs found

    Using Graphics Processing Units to solve the classical N-body problem in physics and astrophysics

    Full text link
    Graphics Processing Units (GPUs) can speed up the numerical solution of various problems in astrophysics including the dynamical evolution of stellar systems; the performance gain can be more than a factor 100 compared to using a Central Processing Unit only. In this work I describe some strategies to speed up the classical NN-body problem using GPUs. I show some features of the NN-body code HiGPUs as template code. In this context, I also give some hints on the parallel implementation of a regularization method and I introduce the code HiGPUs-R. Although the main application of this work concerns astrophysics, some of the presented techniques are of general validity and can be applied to other branches of physics such as electrodynamics and QCD.Comment: 6 pages, 3 figures, to be published in the proccedings "GPU Computing in High Energy Physics", September 10-12, 2014, Pisa, Ital

    Design evolution of large wind turbine generators

    Get PDF
    During the past five years, the goals of economy and reliability have led to a significant evolution in the basic design--both external and internal--of large wind turbine systems. To show the scope and nature of recent changes in wind turbine designs, development of three types are described: (1) system configuration developments; (2) computer code developments; and (3) blade technology developments

    Structural analysis considerations for wind turbine blades

    Get PDF
    Approaches to the structural analysis of wind turbine blade designs are reviewed. Specifications and materials data are discussed along with the analysis of vibrations, loads, stresses, and failure modes

    Calculation of guaranteed mean power from wind turbine generators

    Get PDF
    A method for calculating the 'guaranteed mean' power output of a wind turbine generator is proposed. The term 'mean power' refers to the average power generated at specified wind speeds during short-term tests. Correlation of anemometers, the method of bins for analyzing non-steady data, the PROP Code for predicting turbine power, and statistical analysis of deviations in test data from theory are discussed. Guaranteed mean power density for the Clayton Mod-OA system was found to be 8 watts per square meter less than theoretical power density at all power levels, with a confidence level of 0.999. This amounts to 4 percent of rated power

    The Evolutionary Unified Scheme. I. Quasars and Radio Galaxies in the Viewing Angle - Redshift Plane

    Get PDF
    We present a study of the distribution of quasars and radio galaxies in the plane (viewing angle - redshift) in the framework of the evolutionary unified scheme (Vagnetti et al. 1991). Results are presented for some illustrative cases, including a distribution of the Lorentz factors, and appropriate luminosity functions for quasars and their host galaxies. A cosmologically increasing is found, in agreement with the previous paper. It is argued that the appearence of sources as quasars or radio galaxies can depend on the viewing angle and on the redshift, due to the balance between the beamed component and the luminosity of the host galaxy. Within the assumptions of our evolutionary unified scheme, we find that low-Gamma objects can be observed as quasars mainly at z<~0.3, while a substantial fraction of the low-z radio galaxies could consist of quasar-remnants.Comment: to appear in ApJ; 18 pages, uuencoded-compressed-tarred PostScript file including figures; ROM2F/94/1

    Structural analysis of wind turbine rotors for NSF-NASA Mod-0 wind power system

    Get PDF
    Preliminary estimates of vibratory loads and stresses in hingeless and teetering rotors for the proposed 100-kW wind power system are presented. Stresses in the shank areas of the 19-m (62.5-ft) blades are given for static, rated, and overload conditions. The teetering rotor has substantial advantages over the hingeless rotor with respect to shank stresses, fatigue life, and tower loading. A teetering rotor will probably be required in order to achieve a long service life in a large wind turbine exposed to periodic overload conditions

    Large-scale wind turbine structures

    Get PDF
    The purpose of this presentation is to show how structural technology was applied in the design of modern wind turbines, which were recently brought to an advanced stage of development as sources of renewable power. Wind turbine structures present many difficult problems because they are relatively slender and flexible; subject to vibration and aeroelastic instabilities; acted upon by loads which are often nondeterministic; operated continuously with little maintenance in all weather; and dominated by life-cycle cost considerations. Progress in horizontal-axis wind turbines (HAWT) development was paced by progress in the understanding of structural loads, modeling of structural dynamic response, and designing of innovative structural response. During the past 15 years a series of large HAWTs was developed. This has culminated in the recent completion of the world's largest operating wind turbine, the 3.2 MW Mod-5B power plane installed on the island of Oahu, Hawaii. Some of the applications of structures technology to wind turbine will be illustrated by referring to the Mod-5B design. First, a video overview will be presented to provide familiarization with the Mod-5B project and the important components of the wind turbine system. Next, the structural requirements for large-scale wind turbines will be discussed, emphasizing the difficult fatigue-life requirements. Finally, the procedures used to design the structure will be presented, including the use of the fracture mechanics approach for determining allowable fatigue stresses

    A hydrodynamical homotopy co-momentum map and a multisymplectic interpretation of higher order linking numbers

    Full text link
    In this article a homotopy co-momentum map (\`a la Callies-Fr\'egier-Rogers-Zambon) trangressing to the standard hydrodynamical co-momentum map of Arnol'd, Marsden and Weinstein and others is constructed and then generalized to a special class of Riemannian manifolds. Also, a covariant phase space interpretation of the coadjoint orbits associated to the Euler evolution for perfect fluids and in particular of Brylinski's manifold of smooth oriented knots is discussed. As an application of the above homotopy co-momentum map, a reinterpretation of the (Massey) higher order linking numbers in terms of conserved quantities within the multisymplectic framework is provided and knot theoretic analogues of first integrals in involution are determined.Comment: 21 pages, 3 figures. The present version focuses on the connections between multisymplectic geometry, hydrodynamics and vortices. The derivation of the HOMFLYPT polynomial via geometric quantization has been proposed as a separate preprint, see "Derivation of the HOMFLYPT knot polynomial via helicity and geometric quantization ", arXiv:1910.xxx

    Comparison of computer codes for calculating dynamic loads in wind turbines

    Get PDF
    The development of computer codes for calculating dynamic loads in horizontal axis wind turbines was examined, and a brief overview of each code was given. The performance of individual codes was compared against two sets of test data measured on a 100 KW Mod-0 wind turbine. All codes are aeroelastic and include loads which are gravitational, inertial and aerodynamic in origin
    corecore