34 research outputs found

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2•72 (95% uncertainty interval [UI] 2•66–2•79) in 2000 to 2•31 (2•17–2•46) in 2019. Global annual livebirths increased from 134•5 million (131•5–137•8) in 2000 to a peak of 139•6 million (133•0–146•9) in 2016. Global livebirths then declined to 135•3 million (127•2–144•1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2•1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27•1% (95% UI 26•4–27•8) of global livebirths. Global life expectancy at birth increased from 67•2 years (95% UI 66•8–67•6) in 2000 to 73•5 years (72•8–74•3) in 2019. The total number of deaths increased from 50•7 million (49•5–51•9) in 2000 to 56•5 million (53•7–59•2) in 2019. Under-5 deaths declined from 9•6 million (9•1–10•3) in 2000 to 5•0 million (4•3–6•0) in 2019. Global population increased by 25•7%, from 6•2 billion (6•0–6•3) in 2000 to 7•7 billion (7•5–8•0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58•6 years (56•1–60•8) in 2000 to 63•5 years (60•8–66•1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation: Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Global burden of 87 risk factors in 204 countries and territories, 1990�2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Rigorous analysis of levels and trends in exposure to leading risk factors and quantification of their effect on human health are important to identify where public health is making progress and in which cases current efforts are inadequate. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a standardised and comprehensive assessment of the magnitude of risk factor exposure, relative risk, and attributable burden of disease. Methods: GBD 2019 estimated attributable mortality, years of life lost (YLLs), years of life lived with disability (YLDs), and disability-adjusted life-years (DALYs) for 87 risk factors and combinations of risk factors, at the global level, regionally, and for 204 countries and territories. GBD uses a hierarchical list of risk factors so that specific risk factors (eg, sodium intake), and related aggregates (eg, diet quality), are both evaluated. This method has six analytical steps. (1) We included 560 risk�outcome pairs that met criteria for convincing or probable evidence on the basis of research studies. 12 risk�outcome pairs included in GBD 2017 no longer met inclusion criteria and 47 risk�outcome pairs for risks already included in GBD 2017 were added based on new evidence. (2) Relative risks were estimated as a function of exposure based on published systematic reviews, 81 systematic reviews done for GBD 2019, and meta-regression. (3) Levels of exposure in each age-sex-location-year included in the study were estimated based on all available data sources using spatiotemporal Gaussian process regression, DisMod-MR 2.1, a Bayesian meta-regression method, or alternative methods. (4) We determined, from published trials or cohort studies, the level of exposure associated with minimum risk, called the theoretical minimum risk exposure level. (5) Attributable deaths, YLLs, YLDs, and DALYs were computed by multiplying population attributable fractions (PAFs) by the relevant outcome quantity for each age-sex-location-year. (6) PAFs and attributable burden for combinations of risk factors were estimated taking into account mediation of different risk factors through other risk factors. Across all six analytical steps, 30 652 distinct data sources were used in the analysis. Uncertainty in each step of the analysis was propagated into the final estimates of attributable burden. Exposure levels for dichotomous, polytomous, and continuous risk factors were summarised with use of the summary exposure value to facilitate comparisons over time, across location, and across risks. Because the entire time series from 1990 to 2019 has been re-estimated with use of consistent data and methods, these results supersede previously published GBD estimates of attributable burden. Findings: The largest declines in risk exposure from 2010 to 2019 were among a set of risks that are strongly linked to social and economic development, including household air pollution; unsafe water, sanitation, and handwashing; and child growth failure. Global declines also occurred for tobacco smoking and lead exposure. The largest increases in risk exposure were for ambient particulate matter pollution, drug use, high fasting plasma glucose, and high body-mass index. In 2019, the leading Level 2 risk factor globally for attributable deaths was high systolic blood pressure, which accounted for 10·8 million (95 uncertainty interval UI 9·51�12·1) deaths (19·2% 16·9�21·3 of all deaths in 2019), followed by tobacco (smoked, second-hand, and chewing), which accounted for 8·71 million (8·12�9·31) deaths (15·4% 14·6�16·2 of all deaths in 2019). The leading Level 2 risk factor for attributable DALYs globally in 2019 was child and maternal malnutrition, which largely affects health in the youngest age groups and accounted for 295 million (253�350) DALYs (11·6% 10·3�13·1 of all global DALYs that year). The risk factor burden varied considerably in 2019 between age groups and locations. Among children aged 0�9 years, the three leading detailed risk factors for attributable DALYs were all related to malnutrition. Iron deficiency was the leading risk factor for those aged 10�24 years, alcohol use for those aged 25�49 years, and high systolic blood pressure for those aged 50�74 years and 75 years and older. Interpretation: Overall, the record for reducing exposure to harmful risks over the past three decades is poor. Success with reducing smoking and lead exposure through regulatory policy might point the way for a stronger role for public policy on other risks in addition to continued efforts to provide information on risk factor harm to the general public. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Development and Implementation of a Multi-axial Real-time Hybrid Simulation Framework

    No full text
    Real-time hybrid simulation is an efficient and cost-effective experimental testing technique for performance evaluation of structural systems subjected to earthquake loading with rate-of loading behavior. To assess the response of structural components with multi-axial loading, a loading assembly with multiple parallel actuators connected to a rigid moving platform is required to impose realistic boundary conditions on physical components. This loading assembly is expected to exhibit significant dynamic actuator coupling and suffer from systematic errors and potential instabilities. One approach to reduce experimental errors considers a multi-input, multi-output (MIMO) modeling approach to design controllers that could compensate for these undesired effects. In this study, a framework for three-dimensional, multi-axial real-time hybrid simulation is presented. The methodology consists in designing a real-time system platform to perform dynamic test experiments by controlling the interface boundary conditions on the physical specimen in Cartesian (global) coordinates. First, a kinematic transformation is derived to impose the six-degree-of freedom motion to the loading platform in three-dimensional Cartesian space. Then, a linearized model of the multi-actuator loading assembly is obtained through nonparametric frequency domain system identification techniques. Subsequently, a feedforward-feedback compensator is developed for reference tracking of the multivariate transient signals, which should be sufficiently robust to rule out any disturbances and measurement noises in the experimental closed-loop system. Finally, the numerical substructure, compensators, and kinematic transformations are implemented over an embedded system with a micro-controller unit and digital signal processing capabilities for real-time applications. The proposed framework is validated using a small-scale version of the Load and Boundary Condition Box (LBCB) from Newmark Civil Engineering Laboratory at University of Illinois, Urbana-Champaign. A one-story, two-bay, moment frame was considered as the reference structure, where the experimental substructure was chosen as a steel column with fixed ends. The hybrid system was subjected to earthquake ground motions chosen according to its importance and destructive characteristics. Comparisons of different compensation strategies are made, and excellent performance is achieved for all situations that incorporates the multivariate controller.Becas Chile Scholarship No. 72140204Fulbright Foreign Student Fellowship IIE Grant No. 15130588Universidad Técnica Federico Santa María Faculty Development Fellowship Grant No. 208-13Nathan M. and Anne M. Newmark Endowed Chair in Civil EngineeringOpe

    Development and Implementation of a Multi-axial Real-time Hybrid Simulation Framework

    No full text
    Real-time hybrid simulation is an efficient and cost-effective experimental testing technique for performance evaluation of structural systems subjected to earthquake loading with rate-of loading behavior. To assess the response of structural components with multi-axial loading, a loading assembly with multiple parallel actuators connected to a rigid moving platform is required to impose realistic boundary conditions on physical components. This loading assembly is expected to exhibit significant dynamic actuator coupling and suffer from systematic errors and potential instabilities. One approach to reduce experimental errors considers a multi-input, multi-output (MIMO) modeling approach to design controllers that could compensate for these undesired effects. In this study, a framework for three-dimensional, multi-axial real-time hybrid simulation is presented. The methodology consists in designing a real-time system platform to perform dynamic test experiments by controlling the interface boundary conditions on the physical specimen in Cartesian (global) coordinates. First, a kinematic transformation is derived to impose the six-degree-of freedom motion to the loading platform in three-dimensional Cartesian space. Then, a linearized model of the multi-actuator loading assembly is obtained through nonparametric frequency domain system identification techniques. Subsequently, a feedforward-feedback compensator is developed for reference tracking of the multivariate transient signals, which should be sufficiently robust to rule out any disturbances and measurement noises in the experimental closed-loop system. Finally, the numerical substructure, compensators, and kinematic transformations are implemented over an embedded system with a micro-controller unit and digital signal processing capabilities for real-time applications. The proposed framework is validated using a small-scale version of the Load and Boundary Condition Box (LBCB) from Newmark Civil Engineering Laboratory at University of Illinois, Urbana-Champaign. A one-story, two-bay, moment frame was considered as the reference structure, where the experimental substructure was chosen as a steel column with fixed ends. The hybrid system was subjected to earthquake ground motions chosen according to its importance and destructive characteristics. Comparisons of different compensation strategies are made, and excellent performance is achieved for all situations that incorporates the multivariate controller.Becas Chile Scholarship No. 72140204Fulbright Foreign Student Fellowship IIE Grant No. 15130588Universidad Técnica Federico Santa María Faculty Development Fellowship Grant No. 208-13Nathan M. and Anne M. Newmark Endowed Chair in Civil EngineeringOpe

    Intelligent technology-based control of motion and vibration using MR dampers

    No full text
    Due to their intrinsically nonlinear characteristics, development of control strategies that are implementable and can fully utilize the capabilities of semiactive control devices is an important and challenging task. In this study, two control strategies are proposed for protecting buildings against dynamic hazards, such as severe earthquakes and strong winds, using one of the most promising semiactive control devices, the magnetorheological (MR) damper. The first control strategy is implemented by introducing an inverse neural network (NN) model of the MR damper. These NN models provide direct estimation of the voltage that is required to produce a target control force calculated from some optimal control algorithms. The major objective of this research is to provide an effective means for implementation of the MR damper with existing control algorithms. The second control strategy involves the design of a fuzzy controller and an adaptation law. The control objective is to minimize the difference between some desirable responses and the response of the combined system by adaptively adjusting the MR damper. The use of the adaptation law eliminates the need to acquire characteristics of the combined system in advance. Because the control strategy based on the combination of the fuzzy controller and the adaptation law doesn't require a prior knowledge of the combined building-damper system, this approach provides a robust control strategy that can be used to protect nonlinear or uncertain structures subjected to random loads

    Automated wireless monitoring system for cable tension using smart sensors

    No full text
    Cables are critical load carrying members of cable-stayed bridges; monitoring tension forces of the cables provides valuable information for SHM of the cable-stayed bridges. Monitoring systems for the cable tension can be efficiently realized using wireless smart sensors in conjunction with vibration-based cable tension estimation approaches. This study develops an automated cable tension monitoring system using MEMSIC's Imote2 smart sensors. An embedded data processing strategy is implemented on the Imote2-based wireless sensor network to calculate cable tensions using a vibration-based method, significantly reducing the wireless data transmission and associated power consumption. The autonomous operation of the monitoring system is achieved by AutoMonitor, a high-level coordinator application provided by the Illinois SHM Project Services Toolsuite. The monitoring system also features power harvesting enabled by solar panels attached to each sensor node and AutoMonitor for charging control. The proposed wireless system has been deployed on the Jindo Bridge, a cable-stayed bridge located in South Korea. Tension forces are autonomously monitored for 12 cables in the east, land side of the bridge, proving the validity and potential of the presented tension monitoring system for real-world applications
    corecore