8,049 research outputs found

    Stress-driven instability in growing multilayer films

    Full text link
    We investigate the stress-driven morphological instability of epitaxially growing multilayer films, which are coherent and dislocation-free. We construct a direct elastic analysis, from which we determine the elastic state of the system recursively in terms of that of the old states of the buried layers. In turn, we use the result for the elastic state to derive the morphological evolution equation of surface profile to first order of perturbations, with the solution explicitly expressed by the growth conditions and material parameters of all the deposited layers. We apply these results to two kinds of multilayer structures. One is the alternating tensile/compressive multilayer structure, for which we determine the effective stability properties, including the effect of varying surface mobility in different layers, its interplay with the global misfit of the multilayer film, and the influence of asymmetric structure of compressive and tensile layers on the system stability. The nature of the asymmetry properties found in stability diagrams is in agreement with experimental observations. The other multilayer structure that we study is one composed of stacked strained/spacer layers. We also calculate the kinetic critical thickness for the onset of morphological instability and obtain its reduction and saturation as number of deposited layers increases, which is consistent with recent experimental results. Compared to the single-layer film growth, the behavior of kinetic critical thickness shows deviations for upper strained layers.Comment: 27 pages, 11 figures; Phys. Rev. B, in pres

    The aerodynamic challenges of the design and development of the space shuttle orbiter

    Get PDF
    The major aerodynamic design challenge at the beginning of the United States Space Transportation System (STS) research and development phase was to design a vehicle that would fly as a spacecraft during early entry and as an aircraft during the final phase of entry. The design was further complicated because the envisioned vehicle was statically unstable during a portion of the aircraft mode of operation. The second challenge was the development of preflight aerodynamic predictions with an accuracy consistent with conducting a manned flight on the initial orbital flight. A brief history of the early contractual studies is presented highlighting the technical results and management decisions influencing the aerodynamic challenges. The configuration evolution and the development of preflight aerodynamic predictions will be reviewed. The results from the first four test flights shows excellent agreement with the preflight aerodynamic predictions over the majority of the flight regimes. The only regimes showing significant disagreement is confined primarily to early entry, where prediction of the basic vehicle trim and the influence of the reaction control system jets on the flow field were found to be deficient. Postflight results are analyzed to explain these prediction deficiencies

    Inter- and Intra-annual Effects of Lethal Removal on Common Raven Abundance in Nevada and California, USA

    Get PDF
    Populations of common ravens (Corvus corax; ravens) have increased rapidly within sagebrush (Artemisia spp.) ecosystems between 1960 and 2020. Although ravens are native to North America, their population densities have expanded to levels that negatively influence the population dynamics of other wildlife species of conservation concern, such as greater sage-grouse (Centrocercus urophasianus) and desert tortoises (Gopherus agassizii). For this reason, lethal removal, such as the application of the avicide DRC-1339, has been used to manage raven numbers at local scales and under certain circumstances. Because the relative effectiveness of DRC-1339 in reducing raven populations densities is not thoroughly understood, we completed 2 case studies using a before-after-control-impact experimental design of density estimates generated from point count data within a Bayesian hierarchical distance sampling framework. Specifically, we analyzed \u3e16,000 point count surveys collected during 2009–2019 and split into 2 study designs covering multiple field sites within the Great Basin region. The first experiment evaluated intra-annual changes in density by comparing before and after treatment time periods within a single breeding season for multiple treatment regions compared to 2 control regions. The other experiment focused on inter-annual differences by comparing time periods across years before and after the onset of annual avicide application for a single treatment region compared to multiple control regions. Our models estimated a 100% probability of decline in density relative to control sites for both the intra- and inter-annual model designs. At treatment sites, expected densities of ravens varied but were reduced by 43% (95% CRI: 33–49%) and 54% (95% CRI: 24–71%) according to intra- and inter-annual analyses, respectively, whereas densities increased by 42% (95% CRI: 27–60%) and 15% (95% CRI: -17 to 58%) at control sites. Although population densities were reduced with treatments, trends indicated that sustained effort would likely be needed to maintain densities at acceptable levels within regions of interest. Effectively reducing the adverse effects of raven populations on other native species likely will depend on a variety of targeted management actions such as improving habitat quality for prey species, possibly reducing ravens’ population density, and treating the cause of increased raven abundance to reduce future carrying capacity and prevent rebounds

    In vitro comparison of conventional film and direct digital imaging in the detection of approximal caries

    Get PDF
    This is the published version. Copyright 2014 British Institute of Radiology.Objectives: To compare the diagnostic accuracy of conventional film, unenhanced direct digital and inversion grayscale direct digital imaging in the detection of approximal caries. Methods: 150 approximal surfaces of extracted permanent molars and premolars were selected for the study on the basis of varying lesion depth. The teeth were radiographed using Ektaspeed Plus film; digital images were made with a Schick CMOS-APS sensor. 7 examiners evaluated 58 randomized images of each modality. Histological sectioning of the teeth was used to verify the presence and extent of decay. Results: No significant difference was found between the diagnostic accuracies of the three imaging modalities (P=0.226). Analysis of the diagnostic accuracy of the three modalities on lesion depth showed no statistically significant interaction; however, the main effect of the lesion depth was significant (P<0.001, η2=0.936). Conclusions: The overall diagnostic accuracy of the three modalities in the detection of approximal carious lesions was comparable. All three modalities performed poorly in the detection of enamel lesions

    Quantification of hydroxyacetone and glycolaldehyde using chemical ionization mass spectrometry

    Get PDF
    Chemical ionization mass spectrometry (CIMS) enables online, rapid, in situ detection and quantification of hydroxyacetone and glycolaldehyde. Two different CIMS approaches are demonstrated employing the strengths of single quadrupole mass spectrometry and triple quadrupole (tandem) mass spectrometry. Both methods are generally capable of the measurement of hydroxyacetone, an analyte with known but minimal isobaric interferences. Tandem mass spectrometry provides direct separation of the isobaric compounds glycolaldehyde and acetic acid using distinct, collision-induced dissociation daughter ions. The single quadrupole CIMS measurement of glycolaldehyde was demonstrated during the ARCTAS-CARB (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites - California Air Resources Board) 2008 campaign, while triple quadrupole CIMS measurements of glycolaldehyde and hydroxyacetone were demonstrated during the BEARPEX (Biosphere Effects on Aerosols and Photochemistry Experiment) 2009 campaign. Enhancement ratios of glycolaldehyde in ambient biomass-burning plumes are reported for the ARCTAS-CARB campaign. BEARPEX observations are compared to simple photochemical box model predictions of biogenic volatile organic compound oxidation at the site

    Bioinformatics Methods for Learning Radiation-Induced Lung Inflammation from Heterogeneous Retrospective and Prospective Data

    Get PDF
    Radiotherapy outcomes are determined by complex interactions between physical and biological factors, reflecting both treatment conditions and underlying genetics. Recent advances in radiotherapy and biotechnology provide new opportunities and challenges for predicting radiation-induced toxicities, particularly radiation pneumonitis (RP), in lung cancer patients. In this work, we utilize datamining methods based on machine learning to build a predictive model of lung injury by retrospective analysis of treatment planning archives. In addition, biomarkers for this model are extracted from a prospective clinical trial that collects blood serum samples at multiple time points. We utilize a 3-way proteomics methodology to screen for differentially expressed proteins that are related to RP. Our preliminary results demonstrate that kernel methods can capture nonlinear dose-volume interactions, but fail to address missing biological factors. Our proteomics strategy yielded promising protein candidates, but their role in RP as well as their interactions with dose-volume metrics remain to be determined

    Energetics and atomic mechanisms of dislocation nucleation in strained epitaxial layers

    Get PDF
    We study numerically the energetics and atomic mechanisms of misfit dislocation nucleation and stress relaxation in a two-dimensional atomistic model of strained epitaxial layers on a substrate with lattice misfit. Relaxation processes from coherent to incoherent states for different transition paths are studied using interatomic potentials of Lennard-Jones type and a systematic saddle point and transition path search method. The method is based on a combination of repulsive potential minimization and the Nudged Elastic Band method. For a final state with a single misfit dislocation, the minimum energy path and the corresponding activation barrier are obtained for different misfits and interatomic potentials. We find that the energy barrier decreases strongly with misfit. In contrast to continuous elastic theory, a strong tensile-compressive asymmetry is observed. This asymmetry can be understood as manifestation of asymmetry between repulsive and attractive branches of pair potential and it is found to depend sensitively on the form of the potential.Comment: 11 pages, 9 figures, to appear in Phys. Rev.

    Land Use and Habitat Conditions Across the Southwestern Wyoming Sagebrush Steppe: Development Impacts, Management Effectiveness and the Distribution of Invasive Plants

    Get PDF
    For the past several years, USGS has taken a multi-faceted approach to investigating the condition and trends in sagebrush steppe ecosystems. This recent effort builds upon decades of work in semi-arid ecosystems providing a specific, applied focus on the cumulative impacts of expanding human activities across these landscapes. Here, we discuss several on-going projects contributing to these efforts: (1) mapping and monitoring the distribution and condition of shrub steppe communities with local detail at a regional scale, (2) assessing the relationships between specific, land-use features (for example, roads, transmission lines, industrial pads) and invasive plants, including their potential (environmentally defined) distribution across the region, and (3) monitoring the effects of habitat treatments on the ecosystem, including wildlife use and invasive plant abundance. This research is focused on the northern sagebrush steppe, primarily in Wyoming, but also extending into Montana, Colorado, Utah and Idaho. The study area includes a range of sagebrush types (including, Artemisia tridentata ssp. tridentata, Artemisia tridentata ssp. wyomingensis, Artemisia tridentata ssp. vaseyana, Artemisia nova) and other semi-arid shrubland types (for example, Sarcobatus vermiculatus, Atriplex confertifolia, Atriplex gardneri), impacted by extensive interface between steppe ecosystems and industrial energy activities resulting in a revealing multiple-variable analysis. We use a combination of remote sensing (AWiFS (1 Any reference to platforms, data sources, equipment, software, patented or trade-marked methods is for information purposes only. It does not represent endorsement of the U.S.D.I., U.S.G.S. or the authors), Landsat and Quickbird platforms), Geographic Information System (GIS) design and data management, and field-based, replicated sampling to generate multiple scales of data representing the distribution of shrub communities for the habitat inventory. Invasive plant sampling focused on the interaction between human infrastructure and weedy plant distributions in southwestern Wyoming, while also capturing spatial variability associated with growing conditions and management across the region. In a separate but linked study, we also sampled native and invasive composition of recent and historic habitat treatments. Here, we summarize findings of this ongoing work, highlighting patterns and relationships between vegetation (native and invasive), land cover, landform, and land-use patterns in the sagebrush steppe
    corecore