11,961 research outputs found
Data Compression System with a Minimum Time Delay Unit-Patent
Minimum time delay unit for conventional time multiplexed data compression channel
Magmatic intrusions control Io's crustal thickness
Io, the most volcanically active body in the solar system, loses heat through
eruptions of hot lava. Heat is supplied by tidal heating and is thought to be
transferred through the mantle by magmatic segregation, a mode of transport
that sets it apart from convecting terrestrial planets. We present a model that
couples magmatic transport of tidal heat to the volcanic system in the crust,
in order to determine the controls on crustal thickness, magmatic intrusions,
and eruption rates. We demonstrate that magmatic intrusions are a key component
of Io's crustal heat balance; around 80% of the magma delivered to the base of
the crust must be emplaced and frozen as plutons to match rough estimates of
crustal thickness. As magma ascends from a partially molten mantle into the
crust, a decompacting boundary layer forms, which can explain inferred
observations of a high-melt-fraction region.Comment: Accepted to JGR:Planets. 24 pages inc appendices and references. 7
figure
Compact steep-spectrum sources from the S4 sample
We present the results of 5-GHz observations with the VLA A-array of a sample
of candidate Compact Steep Spectrum sources (CSSs) selected from the S4 survey.
We also estimate the symmetry parameters of high-luminosity CSSs selected from
different samples of radio sources, and compare these with the larger sources
of similar luminosity to understand their evolution and the consistency of the
CSSs with the unified scheme for radio galaxies and quasars. The majority of
CSSs are likely to be young sources advancing outwards through a dense
asymmetric environment. The radio properties of CSSs are found to be consistent
with the unified scheme, in which the axes of the quasars are observed close to
the line of sight, while radio galaxies are observed close to the plane of the
sky.Comment: accepted for publication in mnras; 8 pages, figure 1 with 21 images,
and two additional figures; 2 table
Precision Pointing Control System (PPCS) system design and analysis
The precision pointing control system (PPCS) is an integrated system for precision attitude determination and orientation of gimbaled experiment platforms. The PPCS concept configures the system to perform orientation of up to six independent gimbaled experiment platforms to design goal accuracy of 0.001 degrees, and to operate in conjunction with a three-axis stabilized earth-oriented spacecraft in orbits ranging from low altitude (200-2500 n.m., sun synchronous) to 24 hour geosynchronous, with a design goal life of 3 to 5 years. The system comprises two complementary functions: (1) attitude determination where the attitude of a defined set of body-fixed reference axes is determined relative to a known set of reference axes fixed in inertial space; and (2) pointing control where gimbal orientation is controlled, open-loop (without use of payload error/feedback) with respect to a defined set of body-fixed reference axes to produce pointing to a desired target
The USNO/NRL Green Bank interferometer program
Application of the connected-element radio interferometer of the National Radio Astronomy Observation in Green Bank, West Virginia to the determination of improved source coordinates, astronomical constants, and variations in Earth rotation parameters is discussed. It is concluded that because of the brevity and discontinuity of the data so far no reliable conclusions regarding the accuracy of the data can be drawn
Epitaxial growth in dislocation-free strained alloy films: Morphological and compositional instabilities
The mechanisms of stability or instability in the strained alloy film growth
are of intense current interest to both theorists and experimentalists. We
consider dislocation-free, coherent, growing alloy films which could exhibit a
morphological instability without nucleation. We investigate such strained
films by developing a nonequilibrium, continuum model and by performing a
linear stability analysis. The couplings of film-substrate misfit strain,
compositional stress, deposition rate, and growth temperature determine the
stability of film morphology as well as the surface spinodal decomposition. We
consider some realistic factors of epitaxial growth, in particular the
composition dependence of elastic moduli and the coupling between top surface
and underlying bulk of the film. The interplay of these factors leads to new
stability results. In addition to the stability diagrams both above and below
the coherent spinodal temperature, we also calculate the kinetic critical
thickness for the onset of instability as well as its scaling behavior with
respect to misfit strain and deposition rate. We apply our results to some real
growth systems and discuss the implications related to some recent experimental
observations.Comment: 26 pages, 13 eps figure
Cold atom confinement in an all-optical dark ring trap
We demonstrate confinement of Rb atoms in a dark, toroidal optical
trap. We use a spatial light modulator to convert a single blue-detuned
Gaussian laser beam to a superposition of Laguerre-Gaussian modes that forms a
ring-shaped intensity null bounded harmonically in all directions. We measure a
1/e spin-relaxation lifetime of ~1.5 seconds for a trap detuning of 4.0 nm. For
smaller detunings, a time-dependent relaxation rate is observed. We use these
relaxation rate measurements and imaging diagnostics to optimize trap alignment
in a programmable manner with the modulator. The results are compared with
numerical simulations.Comment: 5 pages, 4 figure
Interval Subroutine Library Mission
We propose the collection, standardization, and distribution of a full-featured production quality library for reliable scientific computing with routines using interval techniques for use by the wide community of applications developers
- …