5,002 research outputs found

    Revisiting two-step Forbush decreases

    Get PDF
    Interplanetary coronal mass ejections (ICMEs) and their shocks can sweep out galactic cosmic rays (GCRs), thus creating Forbush decreases (FDs). The traditional model of FDs predicts that an ICME and its shock decrease the GCR intensity in a two-step profile. This model, however, has been the focus of little testing. Thus, our goal is to discover whether a passing ICME and its shock inevitably lead to a two-step FD, as predicted by the model. We use cosmic ray data from 14 neutron monitors and, when possible, high time resolution GCR data from the spacecraft International Gamma Ray Astrophysical Laboratory (INTEGRAL). We analyze 233 ICMEs that should have created two-step FDs. Of these, only 80 created FDs, and only 13 created two-step FDs. FDs are thus less common than predicted by the model. The majority of events indicates that profiles of FDs are more complicated, particularly within the ICME sheath, than predicted by the model. We conclude that the traditional model of FDs as having one or two steps should be discarded. We also conclude that generally ignored small-scale interplanetary magnetic field structure can contribute to the observed variety of FD profiles

    Suprathermal electron isotropy in high-beta solar wind and its role in heat flux dropouts

    Get PDF
    [1] Time variations in plasma beta and a parameter which measures isotropy in suprathermal electron pitch angle distributions show a remarkably close correspondence throughout the solar wind. The finding implies that high-beta plasma, with its multiple magnetic holes and sharp field and plasma gradients, is conducive to electron pitch-angle scattering, which reduces heat flux from the Sun without field-line disconnection. Thus the finding impacts our understanding of signatures we use to determine magnetic topology in the heliosphere

    Multipoint, high time resolution galactic cosmic ray observations associated with two interplanetary coronal mass ejections

    Get PDF
    [1] Galactic cosmic rays (GCRs) play an important role in our understanding of the interplanetary medium (IPM). The causes of their short timescale variations, however, remain largely unexplored. In this paper, we compare high time resolution, multipoint space-based GCR data to explore structures in the IPM that cause these variations. To ensure that features we see in these data actually relate to conditions in the IPM, we look for correlations between the GCR time series from two instruments onboard the Polar and INTEGRAL (International Gamma Ray Astrophysical Laboratory) satellites, respectively inside and outside Earth\u27s magnetosphere. We analyze the period of 18–24 August 2006 during which two interplanetary coronal mass ejections (ICMEs) passed Earth and produced a Forbush decrease (Fd) in the GCR flux. We find two periods, for a total of 10 h, of clear correlation between small-scale variations in the two GCR time series during these 7 days, thus demonstrating that such variations are observable using space-based instruments. The first period of correlation lasted 6 h and began 2 h before the shock of the first ICME passed the two spacecraft. The second period occurred during the initial decrease of the Fd, an event that did not conform to the typical one- or two-step classification of Fds. We propose that two planar magnetic structures preceding the first ICME played a role in both periods: one structure in driving the first correlation and the other in initiating the Fd

    Quantifying the radiation belt seed population in the 17 March 2013 electron acceleration event

    Get PDF
    Abstract We present phase space density (PSD) observations using data from the Magnetic Electron Ion Spectrometer instrument on the Van Allen Probes for the 17 March 2013 electron acceleration event. We confirm previous results and quantify how PSD gradients depend on the first adiabatic invariant. We find a systematic difference between the lower-energy electrons (1-MeV with a source region within the radiation belts. Our observations show that the source process begins with enhancements to the 10s-100s-keV energy seed population, followed by enhancements to the \u3e1-MeV population and eventually leading to enhancements in the multi-MeV electron population these observations provide the clearest evidence to date of the timing and nature of the radial transport of a 100s keV electron seed population into the heart of the outer belt and subsequent local acceleration of those electrons to higher radiation belt energies. Key Points Quantification of phase space density gradients inside geostationary orbit Clear differences between the source of low energy and relativistic electrons Clear observations of how the acceleration process evolves in energy

    Van Allen Probes show that the inner radiation zone contains no MeV electrons: ECT/MagEIS data

    Get PDF
    Abstract We present Van Allen Probe observations of electrons in the inner radiation zone. The measurements were made by the Energetic Particle, Composition, and Thermal Plasma/Magnetic Electron Ion Spectrometer (MagEIS) sensors that were designed to measure electrons with the ability to remove unwanted signals from penetrating protons, providing clean measurements. No electrons \u3e900 keV were observed with equatorial fluxes above background (i.e., \u3e0.1 el/(cm2 s sr keV)) in the inner zone. The observed fluxes are compared to the AE9 model and CRRES observations. Electron fluxes \u3c200 keV exceeded the AE9 model 50% fluxes and were lower than the higher-energy model fluxes. Phase space density radial profiles for 1.3 ≤ L* \u3c 2.5 had mostly positive gradients except near L*~2.1, where the profiles for μ = 20–30 MeV/G were flat or slightly peaked. The major result is that MagEIS data do not show the presence of significant fluxes of MeV electrons in the inner zone while current radiation belt models and previous publications do

    Heliospheric plasma sheets

    Get PDF
    [1] As a high-beta feature on scales of hours or less, the heliospheric plasma sheet (HPS) encasing the heliospheric current sheet shows a high degree of variability. A study of 52 sector boundaries identified in electron pitch angle spectrograms in Wind data from 1995 reveals that only half concur with both high-beta plasma and current sheets, as required for an HPS. The remaining half lack either a plasma sheet or current sheet or both. A complementary study of 37 high-beta events reveals that only 5 contain sector boundaries while nearly all (34) contain local magnetic field reversals, however brief. We conclude that high-beta plasma sheets surround current sheets but that most of these current sheets are associated with fields turned back on themselves. The findings are consistent with the hypothesis that high-beta plasma sheets, both at and away from sector boundaries, are the heliospheric counterparts of the small coronal transients observed at the tips of helmet streamers, in which case the proposed mechanism for their release, interchange reconnection, could be responsible for the field inversions

    James van Allen and his namesake NASA mission

    Get PDF
    Abstract In many ways, James A. Van Allen defined and “invented” modern space research. His example showed the way for government-university partners to pursue basic research that also served important national and international goals. He was a tireless advocate for space exploration and for the role of space science in the spectrum of national priorities

    Recurrent geomagnetic storms and relativistic electron enhancements in the outer magnetosphere: ISTP coordinated measurements

    Get PDF
    New, coordinated measurements from the International Solar-Terrestrial Physics (ISTP) constellation of spacecraft are presented to show the causes and effects of recurrent geomagnetic activity during recent solar minimum conditions. It is found using WIND and POLAR data that even for modest geomagnetic storms, relativistic electron fluxes are strongly and rapidly enhanced within the outer radiation zone of the Earth\u27s magnetosphere. Solar wind data are utilized to identify the drivers of magnetospheric acceleration processes. Yohkoh solar soft X-ray data are also used to identify the solar coronal holes that produce the high-speed solar wind streams which, in turn, cause the recurrent geomagnetic activity. It is concluded that even during extremely quiet solar conditions (sunspot minimum) there are discernible coronal holes and resultant solar wind streams which can produce intense magnetospheric particle acceleration. As a practical consequence of this Sun-Earth connection, it is noted that a long-lasting E\u3e1MeV electron event in late March 1996 appears to have contributed significantly to a major spacecraft (Anik E1) operational failure

    Shock-induced prompt relativistic electron acceleration in the inner magnetosphere

    Get PDF
    Abstract We present twin Van Allen Probes spacecraft observations of the effects of a solar wind shock impacting the magnetosphere on 8 October 2013. The event provides details both of the accelerating electric fields associated with the shock and the response of inner magnetosphere electron populations across a broad range of energies. During this period, the two Van Allen Probes observed shock effects from the vantage point of the dayside magnetosphere at radial positions of L = 3 and L = 5, at the location where shock-induced acceleration of relativistic electrons occurs. The extended (~1 min) duration of the accelerating electric field across a broad extent of the dayside magnetosphere, coupled with energy-dependent relativistic electron gradient drift velocities, selects a preferred range of energies (3–4 MeV) for the initial enhancement. Those electrons—whose drift velocity closely matches the azimuthal phase velocity of the shock-induced pulse—stayed in the accelerating wave as it propagated tailward and received the largest increase in energy. Drift resonance with subsequent strong ULF waves further accentuated this range of electron energies. Phase space density and positional considerations permit the identification of the source population of the energized electrons. Observations detail the promptness (\u3c20 min), energy range (1.5–4.5 MeV), energy increase (~500 keV), and spatial extent (L* ~3.5–4.0) of the enhancement of the relativistic electrons. Prompt acceleration by impulsive shock-induced electric fields and subsequent ULF wave processes therefore comprises a significant mechanism for the acceleration of highly relativistic electrons deep inside the outer radiation belt as shown clearly by this event
    • …
    corecore