6,283 research outputs found

    Invocation Delivered by Cardinal for American Medical Association

    Get PDF

    GenomeGraphs: integrated genomic data visualization with R.

    Get PDF
    BackgroundBiological studies involve a growing number of distinct high-throughput experiments to characterize samples of interest. There is a lack of methods to visualize these different genomic datasets in a versatile manner. In addition, genomic data analysis requires integrated visualization of experimental data along with constantly changing genomic annotation and statistical analyses.ResultsWe developed GenomeGraphs, as an add-on software package for the statistical programming environment R, to facilitate integrated visualization of genomic datasets. GenomeGraphs uses the biomaRt package to perform on-line annotation queries to Ensembl and translates these to gene/transcript structures in viewports of the grid graphics package. This allows genomic annotation to be plotted together with experimental data. GenomeGraphs can also be used to plot custom annotation tracks in combination with different experimental data types together in one plot using the same genomic coordinate system.ConclusionGenomeGraphs is a flexible and extensible software package which can be used to visualize a multitude of genomic datasets within the statistical programming environment R

    Temporal patterns of gene expression via nonmetric multidimensional scaling analysis

    Full text link
    Motivation: Microarray experiments result in large scale data sets that require extensive mining and refining to extract useful information. We have been developing an efficient novel algorithm for nonmetric multidimensional scaling (nMDS) analysis for very large data sets as a maximally unsupervised data mining device. We wish to demonstrate its usefulness in the context of bioinformatics. In our motivation is also an aim to demonstrate that intrinsically nonlinear methods are generally advantageous in data mining. Results: The Pearson correlation distance measure is used to indicate the dissimilarity of the gene activities in transcriptional response of cell cycle-synchronized human fibroblasts to serum [Iyer et al., Science vol. 283, p83 (1999)]. These dissimilarity data have been analyzed with our nMDS algorithm to produce an almost circular arrangement of the genes. The temporal expression patterns of the genes rotate along this circular arrangement. If an appropriate preparation procedure may be applied to the original data set, linear methods such as the principal component analysis (PCA) could achieve reasonable results, but without data preprocessing linear methods such as PCA cannot achieve a useful picture. Furthermore, even with an appropriate data preprocessing, the outcomes of linear procedures are not as clearcut as those by nMDS without preprocessing.Comment: 11 pages, 6 figures + online only 2 color figures, submitted to Bioinformatic

    A Vacation

    Get PDF
    We were going to Hawaii for a rest. The doctor had said we needed a short vacation, but that was his idea, not ours
    corecore