11 research outputs found

    Differential loss of chromosome 11q in familial and sporadic parasympathetic paragangliomas detected by comparative genomic hybridization

    Get PDF
    Parasympathetic paragangliomas (PGLs) represent neuroendocrine tumors arising from chief cells in branchiomeric and intravagal paraganglia, which share several histological features with their sympathetic counterpart sympathoadrenal paragangliomas. In recent years, genetic analyses of the familial form of PGL have attracted considerable interest. However, the majority of paragangliomas occurs sporadically and it remains to be determined whether the pathogenesis of sporadic paraganglioma resembles that of the familial form. Furthermore, data on comparative genetic aberrations are scarce. To provide fundamental cytogenetic data on sporadic and hereditary PGLs, we performed comparative genomic hybridization using directly fluorochrome-conjugated DNA extracted from 12 frozen and 4 paraffin-embedded tumors. The comparative genomic hybridization data were extended by loss of heterozygosity analysis of chromosome 11q. DNA copy number changes were found in 10 (63%) of 16 tumors. The most frequent chromosomal imbalance involved loss of chromosome 11. Six of seven familial tumors and two of nine sporadic tumors showed loss of 11q (86% versus 22%, P = 0.012). Deletions of 11p and 5p were found in two of nine sporadic tumors. We conclude that overall DNA copy number changes are infrequent in PGLs compared to sympathetic paragangliomas and that loss of chromosome 11 may be an important event in their tumorigenesis, particularly in familial paragangliomas

    Losses of chromosomes 1p and 3q are early genetic events in the development of sporadic pheochromocytomas

    Get PDF
    Despite several loss of heterozygosity studies, a comprehensive genomic survey of pheochromocytomas is still lacking. To identify DNA copy number changes which might be important in tumor development and progression and which may have diagnostic utility, we evaluated genetic aberrations in 29 sporadic adrenal and extra-adrenal pheochromocytomas (19 clinically benign tumors and 10 malignant lesions). Comparative genomic hybridization was performed using directly fluorochrome-conjugated DNA extracted from frozen (16) and paraffin-embedded (13) tumor tissues. The most frequently observed changes were losses of chromosomes 1p11-p32 (86%), 3q (52%), 6q (34%), 3p, 17p (31% each), 11q (28%), and gains of chromosomes 9q (38%) and 17q (31%). No amplification was identified and no difference between adrenal and extra-adrenal tumors was detected. Progression to malignant tumors was strongly associated with deletions of chromosome 6q (60% versus 21% in clinically benign lesions, P = 0.0368) and 17p (50% versus 21%). Fluorescence in situ hybridization confirmed the comparative genomic hybridization data of chromosomes 1p, 3q, and 6q, and revealed aneuploidy in some tumors. Our results suggest that the development of pheochromocytomas is associated with specific genomic aberrations, such as losses of 1p, 3q, and 6q and gains of 9q and 17q. In particular, tumor suppressor genes on chromosomes 1p and 3q may be involved in early tumorigenesis, and deletions of chromosomes 6q and 17p in progression to malignancy

    Implementation of Novel Molecular Biomarkers for Non-small Cell Lung Cancer in the Netherlands: How to Deal With Increasing Complexity

    Get PDF
    The diagnostic landscape of non-small cell lung cancer (NSCLC) is changing rapidly with the availability of novel treatments. Despite high-level healthcare in the Netherlands, not all patients with NSCLC are tested with the currently relevant predictive tumor markers that are necessary for optimal decision-making for today's available targeted or immunotherapy. An expert workshop on the molecular diagnosis of NSCLC involving pulmonary oncologists, clinical chemists, pathologists, and clinical scientists in molecular pathology was held in the Netherlands on December 10, 2018. The aims of the workshop were to facilitate cross-disciplinary discussions regarding standards of practice, and address recent developments and associated challenges that impact future practice. This paper presents a summary of the discussions and consensus opinions of the workshop participants on the initial challenges of harmonization of the detection and clinical use of predictive markers of NSCLC. A key theme identified was the need for broader and active participation of all stakeholders involved in molecular diagnostic services for NSCLC, including healthcare professionals across all disciplines, the hospitals and clinics involved in service delivery, healthcare insurers, and industry groups involved in diagnostic and treatment innovations. Such collaboration is essential to integrate different technologies into molecular diagnostics practice, to increase nationwide patient access to novel technologies, and to ensure consensus-preferred biomarkers are tested

    Exploring imaging features of molecular subtypes of large cell neuroendocrine carcinoma (LCNEC)

    Get PDF
    Objectives: Radiological characteristics and radiomics signatures can aid in differentiation between small cell lung carcinoma (SCLC) and non-small cell lung carcinoma (NSCLC). We investigated whether molecular subtypes of large cell neuroendocrine carcinoma (LCNEC), i.e. SCLC-like (with pRb loss) vs. NSCLC-like (with pRb expression), can be distinguished by imaging based on (1) imaging interpretation, (2) semantic features, and/or (3) a radiomics signature, designed to differentiate between SCLC and NSCLC. Materials and Methods: Pulmonary oncologists and chest radiologists assessed chest CT-scans of 44 LCNEC patients for ‘small cell-like’ or ‘non-small cell-like’ appearance. The radiologists also scored semantic features of 50 LCNEC scans. Finally, a radiomics signature was trained on a dataset containing 48 SCLC and 76 NSCLC scans and validated on an external set of 58 SCLC and 40 NSCLC scans. This signature was applied on scans of 28 SCLC-like and 8 NSCLC-like LCNEC patients. Results: Pulmonary oncologists and radiologists were unable to differentiate between molecular subtypes of LCNEC and no significant differences in semantic features were found. The area under the receiver operating characteristics curve of the radiomics signature in the validation set (SCLC vs. NSCLC) was 0.84 (95% confidence interval (CI) 0.77-0.92) and 0.58 (95% CI 0.29-0.86) in the LCNEC dataset (SCLC-like vs. NSCLC-like). Conclusion: LCNEC appears to have radiological characteristics of both SCLC and NSCLC, irrespective of pRb loss, compatible with the SCLC-like subtype. Imaging interpretation, semantic features and our radiomics signature designed to differentiate between SCLC and NSCLC were unable to separate molecular LCNEC subtypes, which underscores that LCNEC is a unique disease

    Recommendations for the clinical interpretation and reporting of copy number gains using gene panel NGS analysis in routine diagnostics

    Get PDF
    Next-generation sequencing (NGS) panel analysis on DNA from formalin-fixed paraffin-embedded (FFPE) tissue is increasingly used to also identify actionable copy number gains (gene amplifications) in addition to sequence variants. While guidelines for the reporting of sequence variants are available, guidance with respect to reporting copy number gains from gene-panel NGS data is limited. Here, we report on Dutch consensus recommendations obtained in the context of the national Predictive Analysis for THerapy (PATH) project, which aims to optimize and harmonize routine diagnostics in molecular pathology. We briefly d

    Multicenter Comparison of Molecular Tumor Boards in The Netherlands: Definition, Composition, Methods, and Targeted Therapy Recommendations

    Get PDF
    Background: Molecular tumor boards (MTBs) provide rational, genomics-driven, patient-tailored treatment recommendations. Worldwide, MTBs differ in terms of scope, composition, methods, and recommendations. This study aimed to assess differences in methods and agreement in treatment recommendations among MTBs from tertiary cancer referral centers in The Netherlands. Materials and Methods: MTBs from all tertiary cancer referral centers in The Netherlands were invited to participate. A survey assessing scope, value, logistics, composition, decision-making method, reporting, and registration of the MTBs was completed through on-site interviews with members from each MTB. Targeted therapy recommendations were compared using 10 anonymized cases. Participating MTBs were asked to provide a treatment recommendation in accordance with their own methods. Agreement was based on which molecular alteration(s) was considered actionable with the next line of targeted therapy. Results: Interviews with 24 members of eight MTBs revealed that all participating MTBs focused on rare or complex mutational cancer profiles, operated independently of cancer type–specific multidisciplinary teams, and consisted of at least (thoracic and/or medical) oncologists, pathologists, and clinical scientists in molecular pathology. Differences were the types of cancer discussed and the methods used to achieve a recommendation. Nevertheless, agreement among MTB recommendations, based on identified actionable molecular alteration(s), was high for the 10 evaluated cases (86%). Conclusion: MTBs associated with tertiary cancer referral centers in The Netherlands are similar in setup and reach a high agreement in recommendations for rare or complex mutational cancer profiles. We propose a “Dutch MTB model” for an optimal, collaborative, and nationally aligned MTB workflow. Implications for Practice: Interpretation of genomic analyses for optimal choice of target therapy for patients with cancer is becoming increasingly complex. A molecular tumor board (MTB) supports oncologists in rationalizing therapy options. However, there is no consensus on the most optimal setup for an MTB, which can affect the quality of recommendations. This study reveals that the eight MTBs associated with tertiary cancer referral centers in The Netherlands are similar in setup and reach a high agreement in recommendations for rare or complex mutational profiles. The Dutch MTB model is based on a collaborative and nationally aligned workflow with interinstitutional collaboration and data sharing

    Prolonged immune checkpoint inhibitor response of a patient with a RET rearranged non-small cell lung cancer and high tumour mutational burden:Case report and review of the literature

    No full text
    Patients with oncogenic driven metastatic non-small cell lung cancer (NSCLC) represent a special subgroup of metastatic NSCLC, as for several oncogenic drivers, tyrosine kinase inhibitors (TKI, either registered or within a trial) are available. One of the more challenging drivers to target is the rearranged during transfection (RET) fusion, initially found in thyroid cancers, but also present in 1-2% of NSCLC patients. Initially, RET was targeted with multi-kinase inhibitors, with fairly disappointing results (generally no long-term responses and high rates of adverse effects). Selective TKIs are currently being investigated, and results are promising. Limited data is available regarding immune checkpoint inhibitor (ICI) efficacy in NSCLC patients with a RET rearrangement. We present a case of a male patient with stage IV NSCLC with a RET gene rearrangement, with low programmed death-ligand 1 (PD-L1) expression, but high tumour mutational burden (TMB), responding to second line nivolumab. To put these data into perspective, we also review the literature regarding treatment of NSCLC patients with a RET gene rearrangement with either TKIs or ICI
    corecore