1,869 research outputs found
Current-Induced Spin Polarization in Gallium Nitride
Electrically generated spin polarization is probed directly in bulk GaN using
Kerr rotation spectroscopy. A series of n-type GaN epilayers are grown in the
wurtzite phase both by molecular beam epitaxy (MBE) and metalorganic chemical
vapor deposition (MOCVD) with a variety of doping densities chosen to broadly
modulate the transverse spin lifetime, T2*. The spin polarization is
characterized as a function of electrical excitation energy over a range of
temperatures. Despite weak spin-orbit interactions in GaN, a current-induced
spin polarization (CISP) is observed in the material at temperatures of up to
200 K.Comment: 16 pages, 3 figure
The Nonlinear Future-Stability of the FLRW Family of Solutions to the Euler-Einstein System with a Positive Cosmological Constant
In this article, we study small perturbations of the family of
Friedmann-Lema\^itre-Robertson-Walker cosmological background solutions to the
1 + 3 dimensional Euler-Einstein system with a positive cosmological constant.
These background solutions describe an initially uniform quiet fluid of
positive energy density evolving in a spacetime undergoing accelerated
expansion. Our nonlinear analysis shows that under the equation of state
pressure = c_s^2 * energy density, with 0 < c_s^2 < 1/3, the background
solutions are globally future-stable. In particular, we prove that the
perturbed spacetime solutions, which have the topological structure [0,infty) x
T^3, are future causally geodesically complete. These results are extensions of
previous results derived by the author in a collaboration with I. Rodnianski,
in which the fluid was assumed to be irrotational. Our novel analysis of a
fluid with non-zero vorticity is based on the use of suitably-defined energy
currents.Comment: Accepted for publication in Selecta Mathematica, 78 pages. arXiv
admin note: significant text overlap with arXiv:0911.550
Identification of Alternative Transcripts Encoding the Essential Murine Gammaherpesvirus Lytic Transactivator RTA
The essential immediate early transcriptional activator RTA, encoded by gene 50, is conserved among all characterized gammaherpesviruses. Analyses of a recombinant murine gammaherpesvirus 68 (MHV68) lacking both of the known gene 50 promoters (G50DblKo) revealed that this mutant retained the ability to replicate in the simian kidney epithelial cell line Vero but not in permissive murine fibroblasts following low-multiplicity infection. However, G50DblKo replication in permissive fibroblasts was partially rescued by high-multiplicity infection. In addition, replication of the G50DblKo virus was rescued by growth on mouse embryonic fibroblasts (MEFs) isolated from IFN-α/βR(−/−) mice, while growth on Vero cells was suppressed by the addition of alpha interferon (IFN-α). 5′ rapid amplification of cDNA ends (RACE) analyses of RNAs prepared from G50DblKo and wild-type MHV68-infected murine macrophages identified three novel gene 50 transcripts initiating from 2 transcription initiation sites located upstream of the currently defined proximal and distal gene 50 promoters. In transient promoter assays, neither of the newly identified gene 50 promoters exhibited sensitivity to IFN-α treatment. Furthermore, in a single-step growth analysis RTA levels were higher at early times postinfection with the G50DblKo mutant than with wild-type virus but ultimately fell below the levels of RTA expressed by wild-type virus at later times in infection. Infection of mice with the MHV68 G50DblKo virus demonstrated that this mutant virus was able to establish latency in the spleen and peritoneal exudate cells (PECs) of C57BL/6 mice with about 1/10 the efficiency of wild-type virus or marker rescue virus. However, despite the ability to establish latency, the G50DblKo virus mutant was severely impaired in its ability to reactivate from either latently infected splenocytes or PECs. Consistent with the ability to rescue replication of the G50DblKo mutant by growth on type I interferon receptor null MEFs, infection of IFN-α/βR(−/−) mice with the G50DblKo mutant virus demonstrated partial rescue of (i) acute virus replication in the lungs, (ii) establishment of latency, and (iii) reactivation from latency. The identification of additional gene 50/RTA transcripts highlights the complex mechanisms involved in controlling expression of RTA, likely reflecting time-dependent and/or cell-specific roles of different gene 50 promoters in controlling virus replication. Furthermore, the newly identified gene 50 transcripts may also act as negative regulators that modulate RTA expression. IMPORTANCE The viral transcription factor RTA, encoded by open reading frame 50 (Orf50), is well conserved among all known gammaherpesviruses and is essential for both virus replication and reactivation from latently infected cells. Previous studies have shown that regulation of gene 50 transcription is complex. The studies reported here describe the presence of additional alternatively initiated, spliced transcripts that encode RTA. Understanding how expression of this essential viral gene product is regulated may identify new strategies for interfering with infection in the setting of gammaherpesvirus-induced diseases
Cryo-EM structure of Mcm2-7 double hexamer on DNA suggests a lagging-strand DNA extrusion model
During replication initiation, the core component of the helicase-the Mcm2-7 hexamer-is loaded on origin DNA as a double hexamer (DH). The two ring-shaped hexamers are staggered, leading to a kinked axial channel. How the origin DNA interacts with the axial channel is not understood, but the interaction could provide key insights into Mcm2-7 function and regulation. Here, we report the cryo-EM structure of the Mcm2-7 DH on dsDNA and show that the DNA is zigzagged inside the central channel. Several of the Mcm subunit DNA-binding loops, such as the oligosaccharide-oligonucleotide loops, helix 2 insertion loops, and presensor 1 (PS1) loops, are well defined, and many of them interact extensively with the DNA. The PS1 loops of Mcm 3, 4, 6, and 7, but not 2 and 5, engage the lagging strand with an approximate step size of one base per subunit. Staggered coupling of the two opposing hexamers positions the DNA right in front of the two Mcm2-Mcm5 gates, with each strand being pressed against one gate. The architecture suggests that lagging-strand extrusion initiates in the middle of the DH that is composed of the zinc finger domains of both hexamers. To convert the Mcm2-7 DH structure into the Mcm2-7 hexamer structure found in the active helicase, the N-tier ring of the Mcm2-7 hexamer in the DH-dsDNA needs to tilt and shift laterally. We suggest that these N-tier ring movements cause the DNA strand separation and lagging-strand extrusion
Solving the Klein-Gordon equation using Fourier spectral methods: A benchmark test for computer performance
The cubic Klein-Gordon equation is a simple but non-trivial partial
differential equation whose numerical solution has the main building blocks
required for the solution of many other partial differential equations. In this
study, the library 2DECOMP&FFT is used in a Fourier spectral scheme to solve
the Klein-Gordon equation and strong scaling of the code is examined on
thirteen different machines for a problem size of 512^3. The results are useful
in assessing likely performance of other parallel fast Fourier transform based
programs for solving partial differential equations. The problem is chosen to
be large enough to solve on a workstation, yet also of interest to solve
quickly on a supercomputer, in particular for parametric studies. Unlike other
high performance computing benchmarks, for this problem size, the time to
solution will not be improved by simply building a bigger supercomputer.Comment: 10 page
Entropy production for mechanically or chemically driven biomolecules
Entropy production along a single stochastic trajectory of a biomolecule is
discussed for two different sources of non-equilibrium. For a molecule
manipulated mechanically by an AFM or an optical tweezer, entropy production
(or annihilation) occurs in the molecular conformation proper or in the
surrounding medium. Within a Langevin dynamics, a unique identification of
these two contributions is possible. The total entropy change obeys an integral
fluctuation theorem and a class of further exact relations, which we prove for
arbitrarily coupled slow degrees of freedom including hydrodynamic
interactions. These theoretical results can therefore also be applied to driven
colloidal systems. For transitions between different internal conformations of
a biomolecule involving unbalanced chemical reactions, we provide a
thermodynamically consistent formulation and identify again the two sources of
entropy production, which obey similar exact relations. We clarify the
particular role degenerate states have in such a description
Structural and mechanistic insights into Mcm2-7 double-hexamer assembly and function
Eukaryotic cells license each DNA replication origin during G1 phase by assembling a prereplication complex that contains a Mcm2-7 (minichromosome maintenance proteins 2-7) double hexamer. During S phase, each Mcm2-7 hexamer forms the core of a replicative DNA helicase. However, the mechanisms of origin licensing and helicase activation are poorly understood. The helicase loaders ORC-Cdc6 function to recruit a single Cdt1-Mcm2-7 heptamer to replication origins prior to Cdt1 release and ORC-Cdc6-Mcm2-7 complex formation, but how the second Mcm2-7 hexamer is recruited to promote double-hexamer formation is not well understood. Here, structural evidence for intermediates consisting of an ORC-Cdc6-Mcm2-7 complex and an ORC-Cdc6-Mcm2-7-Mcm2-7 complex are reported, which together provide new insights into DNA licensing. Detailed structural analysis of the loaded Mcm2-7 double-hexamer complex demonstrates that the two hexamers are interlocked and misaligned along the DNA axis and lack ATP hydrolysis activity that is essential for DNA helicase activity. Moreover, we show that the head-to-head juxtaposition of the Mcm2-7 double hexamer generates a new protein interaction surface that creates a multisubunit-binding site for an S-phase protein kinase that is known to activate DNA replication. The data suggest how the double hexamer is assembled and how helicase activity is regulated during DNA licensing, with implications for cell cycle control of DNA replication and genome stability
A unique DNA entry gate serves for regulated loading of the eukaryotic replicative helicase MCM2-7 onto DNA.
The regulated loading of the replicative helicase minichromosome maintenance proteins 2–7 (MCM2–7) onto replication origins is a prerequisite for replication fork establishment and genomic stability. Origin recognition complex (ORC), Cdc6, and Cdt1 assemble two MCM2–7 hexamers into one double hexamer around dsDNA. Although the MCM2–7 hexamer can adopt a ring shape with a gap between Mcm2 and Mcm5, it is unknown which Mcm interface functions as the DNA entry gate during regulated helicase loading. Here, we establish that the Saccharomyces cerevisiae MCM2–7 hexamer assumes a closed ring structure, suggesting that helicase loading requires active ring opening. Using a chemical biology approach, we show that ORC–Cdc6–Cdt1-dependent helicase loading occurs through a unique DNA entry gate comprised of the Mcm2 and Mcm5 subunits. Controlled inhibition of DNA insertion triggers ATPase-driven complex disassembly in vitro, while in vivo analysis establishes that Mcm2/Mcm5 gate opening is essential for both helicase loading onto chromatin and cell cycle progression. Importantly, we demonstrate that the MCM2–7 helicase becomes loaded onto DNA as a single hexamer during ORC/Cdc6/Cdt1/MCM2–7 complex formation prior to MCM2–7 double hexamer formation. Our study establishes the existence of a unique DNA entry gate for regulated helicase loading, revealing key mechanisms in helicase loading, which has important implications for helicase activation
- …