74 research outputs found

    Magnetic and electric dipole moments of the H 3Δ1H\ {}^3\Delta_1 state in ThO

    Get PDF
    The metastable H 3Δ1H \ {}^3\Delta_1 state in the thorium monoxide (ThO) molecule is highly sensitive to the presence of a CP-violating permanent electric dipole moment of the electron (eEDM). The magnetic dipole moment μH\mu_H and the molecule-fixed electric dipole moment DHD_H of this state are measured in preparation for a search for the eEDM. The small magnetic moment μH=8.5(5)×103 μB\mu_H = 8.5(5) \times 10^{-3} \ \mu_B displays the predicted cancellation of spin and orbital contributions in a 3Δ1{}^3 \Delta_1 paramagnetic molecular state, providing a significant advantage for the suppression of magnetic field noise and related systematic effects in the eEDM search. In addition, the induced electric dipole moment is shown to be fully saturated in very modest electric fields (<< 10 V/cm). This feature is favorable for the suppression of many other potential systematic errors in the ThO eEDM search experiment.Comment: 4 pages, 3 figure

    Shot-noise-limited spin measurements in a pulsed molecular beam

    Get PDF
    Heavy diatomic molecules have been identified as good candidates for use in electron electric dipole moment (eEDM) searches. Suitable molecular species can be produced in pulsed beams, but with a total flux and/or temporal evolution that varies significantly from pulse to pulse. These variations can degrade the experimental sensitivity to changes in spin precession phase of an electri- cally polarized state, which is the observable of interest for an eEDM measurement. We present two methods for measurement of the phase that provide immunity to beam temporal variations, and make it possible to reach shot-noise-limited sensitivity. Each method employs rapid projection of the spin state onto both components of an orthonormal basis. We demonstrate both methods using the eEDM-sensitive H state of thorium monoxide (ThO), and use one of them to measure the magnetic moment of this state with increased accuracy relative to previous determinations.Comment: 12 pages, 6 figure

    Magnetic and electric dipole moments of the H^3 Δ_1 state in ThO

    Get PDF
    The metastable H^3 Δ_1 state in the thorium monoxide (ThO) molecule is highly sensitive to the presence of a CP -violating permanent electric dipole moment of the electron (eEDM) [E. R. Meyer and J. L. Bohn, Phys. Rev. A 78, 010502 (2008)]. The magnetic dipole moment μ_H and the molecule-fixed electric dipole moment D_H of this state are measured in preparation for a search for the eEDM. The small magnetic moment μH=8.5(5)×10^(−3)μ_B displays the predicted cancellation of spin and orbital contributions in a ^3Δ_1 paramagnetic molecular state, providing a significant advantage for the suppression of magnetic field noise and related systematic effects in the eEDM search. In addition, the induced electric dipole moment is shown to be fully saturated in very modest electric fields (<10 V/cm). This feature is favorable for the suppression of many other potential systematic errors in the ThO eEDM search experiment

    Direct frequency comb measurement of OD + CO → DOCO kinetics

    Get PDF
    The kinetics of the hydroxyl radical (OH) + carbon monoxide (CO) reaction, which is fundamental to both atmospheric and combustion chemistry, are complex because of the formation of the hydrocarboxyl radical (HOCO) intermediate. Despite extensive studies of this reaction, HOCO has not been observed under thermal reaction conditions. Exploiting the sensitive, broadband, and high-resolution capabilities of time-resolved cavity-enhanced direct frequency comb spectroscopy, we observed deuteroxyl radical (OD) + CO reaction kinetics and detected stabilized trans-DOCO, the deuterated analog of trans-HOCO. By simultaneously measuring the time-dependent concentrations of the trans-DOCO and OD species, we observed unambiguous low-pressure termolecular dependence of the reaction rate coefficients for N_2 and CO bath gases. These results confirm the HOCO formation mechanism and quantify its yield

    Search for the electric dipole moment of the electron with thorium monoxide

    Get PDF
    The electric dipole moment of the electron (eEDM) is a signature of CP-violating physics beyond the Standard Model. We describe an ongoing experiment to measure or set improved limits to the eEDM, using a cold beam of thorium monoxide (ThO) molecules. The metastable H3Δ1H {}^3\Delta_1 state in ThO has important advantages for such an experiment. We argue that the statistical uncertainty of an eEDM measurement could be improved by as much as 3 orders of magnitude compared to the current experimental limit, in a first-generation apparatus using a cold ThO beam. We describe our measurements of the HH state lifetime and the production of ThO molecules in a beam, which provide crucial data for the eEDM sensitivity estimate. ThO also has ideal properties for the rejection of a number of known systematic errors; these properties and their implications are described.Comment: v2: Equation (11) correcte

    Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron

    Get PDF
    The Standard Model of particle physics is known to be incomplete. Extensions to the Standard Model, such as weak-scale supersymmetry, posit the existence of new particles and interactions that are asymmetric under time reversal (T) and nearly always predict a small yet potentially measurable electron electric dipole moment (EDM), d_e, in the range of 10^(−27) to 10^(−30) e·cm. The EDM is an asymmetric charge distribution along the electron spin (S) that is also asymmetric under T. Using the polar molecule thorium monoxide, we measured d_e = (–2.1±3.7_(stat)±2.5_(syst)) × 10−29 e·cm. This corresponds to an upper limit of ❘d_e❘ < 8.7 × 10^(−29) e·cm with 90% confidence, an order of magnitude improvement in sensitivity relative to the previous best limit. Our result constrains T-violating physics at the TeV energy scale

    Magnetic and electric dipole moments of the H^3 Δ_1 state in ThO

    Get PDF
    The metastable H^3 Δ_1 state in the thorium monoxide (ThO) molecule is highly sensitive to the presence of a CP -violating permanent electric dipole moment of the electron (eEDM) [E. R. Meyer and J. L. Bohn, Phys. Rev. A 78, 010502 (2008)]. The magnetic dipole moment μ_H and the molecule-fixed electric dipole moment D_H of this state are measured in preparation for a search for the eEDM. The small magnetic moment μH=8.5(5)×10^(−3)μ_B displays the predicted cancellation of spin and orbital contributions in a ^3Δ_1 paramagnetic molecular state, providing a significant advantage for the suppression of magnetic field noise and related systematic effects in the eEDM search. In addition, the induced electric dipole moment is shown to be fully saturated in very modest electric fields (<10 V/cm). This feature is favorable for the suppression of many other potential systematic errors in the ThO eEDM search experiment

    Direct frequency comb measurement of OD + CO → DOCO kinetics

    Get PDF
    The kinetics of the hydroxyl radical (OH) + carbon monoxide (CO) reaction, which is fundamental to both atmospheric and combustion chemistry, are complex because of the formation of the hydrocarboxyl radical (HOCO) intermediate. Despite extensive studies of this reaction, HOCO has not been observed under thermal reaction conditions. Exploiting the sensitive, broadband, and high-resolution capabilities of time-resolved cavity-enhanced direct frequency comb spectroscopy, we observed deuteroxyl radical (OD) + CO reaction kinetics and detected stabilized trans-DOCO, the deuterated analog of trans-HOCO. By simultaneously measuring the time-dependent concentrations of the trans-DOCO and OD species, we observed unambiguous low-pressure termolecular dependence of the reaction rate coefficients for N_2 and CO bath gases. These results confirm the HOCO formation mechanism and quantify its yield
    corecore