26 research outputs found

    Analysis of the Magnetic Properties of Nitrogenase FeMo Cofactor by Single-Crystal EPR Spectroscopy

    Get PDF
    The catalytic center of nitrogenase, the [Mo:7Fe:9S:C]:homocitrate FeMo cofactor, is a S=3/2 system with a rhombic magnetic g tensor. Single-crystal EPR spectroscopy in combination with X-ray diffraction were used to determine the relative orientation of the g tensor with respect to the cluster structure. The protein environment influences the electronic structure of the FeMo cofactor, dictating preferred orientations of possible functional relevance

    Reversible Protonated Resting State of the Nitrogenase Active Site

    Get PDF
    Protonated states of the nitrogenase active site are mechanistically significant since substrate reduction is invariably accompanied by proton uptake. We report the low pH characterization by X-ray crystallography and EPR spectroscopy of the nitrogenase molybdenum iron (MoFe) proteins from two phylogenetically distinct nitrogenases (Azotobacter vinelandii, Av, and Clostridium pasteurianum, Cp) at pHs between 4.5 and 8. X-ray data at pHs of 4.5–6 reveal the repositioning of side chains along one side of the FeMo-cofactor, and the corresponding EPR data shows a new S = 3/2 spin system with spectral features similar to a state previously observed during catalytic turnover. The structural changes suggest that FeMo-cofactor belt sulfurs S3A or S5A are potential protonation sites. Notably, the observed structural and electronic low pH changes are correlated and reversible. The detailed structural rearrangements differ between the two MoFe proteins, which may reflect differences in potential protonation sites at the active site among nitrogenase species. These observations emphasize the benefits of investigating multiple nitrogenase species. Our experimental data suggest that reversible protonation of the resting state is likely occurring, and we term this state “E_0H+”, following the Lowe–Thorneley naming scheme

    Site-specific oxidation state assignments of the irons in the [4Fe:4S]^(2+/1+/0) states of the nitrogenase Fe-protein

    Get PDF
    The nitrogenase iron protein (Fe‐protein) contains an unusual [4Fe:4S] iron‐sulphur cluster that is stable in three oxidation states: 2+, 1+, and 0. Here, we use spatially resolved anomalous dispersion (SpReAD) refinement to determine oxidation assignments for the individual irons for each state. Additionally, we report the 1.13‐Å resolution structure for the ADP bound Fe‐protein, the highest resolution Fe‐protein structure presently determined. In the dithionite‐reduced [4Fe:4S]^(1+) state, our analysis identifies a solvent exposed, delocalized Fe2.5+ pair and a buried Fe^(2+) pair. We propose that ATP binding by the Fe‐protein promotes an internal redox rearrangement such that the solvent‐exposed Fe pair becomes reduced, thereby facilitating electron transfer to the nitrogenase molybdenum iron‐protein. In the [4Fe:4S]^0 and [4Fe:4S]^(2+) states, the SpReAD analysis supports oxidation states assignments for all irons in these clusters of Fe^(2+) and valence delocalized Fe^(2.5+), respectively

    Catalysis-dependent selenium incorporation and migration in the nitrogenase active site iron-molybdenum cofactor

    Get PDF
    Dinitrogen reduction in the biological nitrogen cycle is catalyzed by nitrogenase, a two-component metalloenzyme. Understanding of the transformation of the inert resting state of the active site FeMo-cofactor into an activated state capable of reducing dinitrogen remains elusive. Here we report the catalysis dependent, site-selective incorporation of selenium into the FeMo-cofactor from selenocyanate as a newly identified substrate and inhibitor. The 1.60 Å resolution structure reveals selenium occupying the S2B site of FeMo-cofactor in the Azotobacter vinelandii MoFe-protein, a position that was recently identified as the CO-binding site. The Se2B-labeled enzyme retains substrate reduction activity and marks the starting point for a crystallographic pulse-chase experiment of the active site during turnover. Through a series of crystal structures obtained at resolutions of 1.32-1.66 Å, including the CO-inhibited form of Av1-Se2B, the exchangeability of all three belt-sulfur sites is demonstrated, providing direct insights into unforeseen rearrangements of the metal center during catalysis

    Structural Characterization of Two CO Molecules Bound to the Nitrogenase Active Site

    Get PDF
    As an approach towards unraveling the nitrogenase mechanism, we have studied the binding of CO to the active site FeMo‐cofactor. CO is not only an inhibitor of nitrogenase, but it is also a substrate, undergoing reduction to hydrocarbons (Fischer‐Tropsch‐type chemistry). The C‐C bond forming capabilities of nitrogenase suggest that multiple CO, or CO‐derived ligands, bind to the active site. Herein, we report a crystal structure with two CO ligands coordinated to the FeMo‐cofactor of the molybdenum nitrogenase at 1.33 Å resolution. In addition to the previously observed bridging CO ligand between Fe2 and Fe6 of the FeMo‐cofactor, a new ligand binding mode is revealed through a second CO ligand coordinated terminally to Fe6. While the relevance of this state to nitrogenase‐catalyzed reactions remains to be established, it highlights the privileged role for Fe2 and Fe6 in ligand binding, with multiple coordination modes available depending on the ligand and reaction conditions

    Electrochemical and Structural Characterization of Azotobacter vinelandii Flavodoxin II

    Get PDF
    Azotobacter vinelandii flavodoxin II serves as a physiological reductant of nitrogenase, the enzyme system mediating biological nitrogen fixation. Wildtype A. vinelandii flavodoxin II was electrochemically and crystallographically characterized to better understand the molecular basis for this functional role. The redox properties were monitored on surfactant-modified basal plane graphite electrodes, with two distinct redox couples measured by cyclic voltammetry corresponding to reduction potentials of −483 ± 1 mV and −187 ± 9 mV (vs. NHE) in 50 mM potassium phosphate, 150 mM NaCl, pH 7.5. These redox potentials were assigned as the semiquinone/hydroquinone couple and the quinone/semiquinone couple, respectively. This study constitutes one of the first applications of surfactant-modified basal plane graphite electrodes to characterize the redox properties of a flavodoxin, thus providing a novel electrochemical method to study this class of protein. The X-ray crystal structure of the flavodoxin purified from A. vinelandii was solved at 1.17 Å resolution. With this structure, the native nitrogenase electron transfer proteins have all been structurally characterized. Docking studies indicate that a common binding site surrounding the Fe-protein [4Fe:4S] cluster mediates complex formation with the redox partners Mo-Fe protein, ferredoxin I, and flavodoxin II. This model supports a mechanistic hypothesis that electron transfer reactions between the Fe-protein and its redox partners are mutually exclusive

    Turnover-Dependent Inactivation of the Nitrogenase MoFe-Protein at High pH

    Get PDF
    Proton uptake accompanies the reduction of all known substrates by nitrogenase. As a consequence, a higher pH should limit the availability of protons as a substrate essential for turnover, thereby increasing the proportion of more highly reduced forms of the enzyme for further study. The utility of the high-pH approach would appear to be problematic in view of the observation reported by Pham and Burgess [(1993) Biochemistry 32, 13725–13731] that the MoFe-protein undergoes irreversible protein denaturation above pH 8.65. In contrast, we found by both enzyme activity and crystallographic analyses that the MoFe-protein is stable when incubated at pH 9.5. We did observe, however, that at higher pHs and under turnover conditions, the MoFe-protein is slowly inactivated. While a normal, albeit low, level of substrate reduction occurs under these conditions, the MoFe-protein undergoes a complex transformation; initially, the enzyme is reversibly inhibited for substrate reduction at pH 9.5, yet in a second, slower process, the MoFe-protein becomes irreversibly inactivated as measured by substrate reduction activity at the optimal pH of 7.8. The final inactivated MoFe-protein has an increased hydrodynamic radius compared to that of the native MoFe-protein, yet it has a full complement of iron and molybdenum. Significantly, the modified MoFe-protein retains the ability to specifically interact with its nitrogenase partner, the Fe-protein, as judged by the support of ATP hydrolysis and by formation of a tight complex with the Fe-protein in the presence of ATP and aluminum fluoride. The turnover-dependent inactivation coupled to conformational change suggests a mechanism-based transformation that may provide a new probe of nitrogenase catalysis

    Site-specific oxidation state assignments of the irons in the [4Fe:4S]^(2+/1+/0) states of the nitrogenase Fe-protein

    Get PDF
    The nitrogenase iron protein (Fe‐protein) contains an unusual [4Fe:4S] iron‐sulphur cluster that is stable in three oxidation states: 2+, 1+, and 0. Here, we use spatially resolved anomalous dispersion (SpReAD) refinement to determine oxidation assignments for the individual irons for each state. Additionally, we report the 1.13‐Å resolution structure for the ADP bound Fe‐protein, the highest resolution Fe‐protein structure presently determined. In the dithionite‐reduced [4Fe:4S]^(1+) state, our analysis identifies a solvent exposed, delocalized Fe2.5+ pair and a buried Fe^(2+) pair. We propose that ATP binding by the Fe‐protein promotes an internal redox rearrangement such that the solvent‐exposed Fe pair becomes reduced, thereby facilitating electron transfer to the nitrogenase molybdenum iron‐protein. In the [4Fe:4S]^0 and [4Fe:4S]^(2+) states, the SpReAD analysis supports oxidation states assignments for all irons in these clusters of Fe^(2+) and valence delocalized Fe^(2.5+), respectively

    Identification of a spin-coupled Mo(III) in the nitrogenase iron-molybdenum cofactor

    Get PDF
    International audienceNitrogenase is a complex enzyme that catalyzes the formation of ammonia utilizing a MoFe7S9C cluster. The presence of a central carbon atom was recently revealed, finally completing the atomic level description of the active site. However, important prerequisites for understanding the mechanism - the total charge, metal oxidation states and electronic structure are unknown. Herein we present high-energy resolution fluorescence detected Mo K-edge X-ray absorption spectroscopy of nitrogenase. Comparison to FeMo model complexes of known oxidation state indicates that the Mo in the FeMo cofactor of nitrogenase is best described as Mo(III), in contrast to the universally accepted Mo(IV) assignment. The oxidation state assignment is supported by theoretical calculations, which reveal the presence of an unusual spin-coupled Mo(III) site. Although so far Mo(III) was not reported to occur in biology the suggestion raises interesting parallels with the known homogenous Mo catalysts for N-2 reduction, where a Mo(III) compound is the N-2-binding species. It also requires a reassignment of the Fe oxidation states in the cofacto

    Evidence for Interstitial Carbon in Nitrogenase FeMo Cofactor

    Get PDF
    The identity of the interstitial light atom in the center of the FeMo cofactor of nitrogenase has been enigmatic since its discovery. Atomic-resolution x-ray diffraction data and an electron spin echo envelope modulation (ESEEM) analysis now provide direct evidence that the ligand is a carbon species
    corecore