74 research outputs found

    Migratory Dermal Dendritic Cells Act as Rapid Sensors of Protozoan Parasites

    Get PDF
    Dendritic cells (DC), including those of the skin, act as sentinels for intruding microorganisms. In the epidermis, DC (termed Langerhans cells, LC) are sessile and screen their microenvironment through occasional movements of their dendrites. The spatio-temporal orchestration of antigen encounter by dermal DC (DDC) is not known. Since these cells are thought to be instrumental in the initiation of immune responses during infection, we investigated their behavior directly within their natural microenvironment using intravital two-photon microscopy. Surprisingly, we found that, under homeostatic conditions, DDC were highly motile, continuously crawling through the interstitial space in a Gαi protein-coupled receptor–dependent manner. However, within minutes after intradermal delivery of the protozoan parasite Leishmania major, DDC became immobile and incorporated multiple parasites into cytosolic vacuoles. Parasite uptake occurred through the extension of long, highly dynamic pseudopods capable of tracking and engulfing parasites. This was then followed by rapid dendrite retraction towards the cell body. DDC were proficient at discriminating between parasites and inert particles, and parasite uptake was independent of the presence of neutrophils. Together, our study has visualized the dynamics and microenvironmental context of parasite encounter by an innate immune cell subset during the initiation of the immune response. Our results uncover a unique migratory tissue surveillance program of DDC that ensures the rapid detection of pathogens

    Controlling Activity and Selectivity Using Water in the Au-Catalysed Preferential Oxidation of CO in H\u3csub\u3e2\u3c/sub\u3e

    Get PDF
    Industrial hydrogen production through methane steam reforming exceeds 50 million tons annually and accounts for 2–5% of global energy consumption. The hydrogen product, even after processing by the water–gas shift, still typically contains ∼1% CO, which must be removed for many applications. Methanation (CO + 3H2 → CH4 + H2O) is an effective solution to this problem, but consumes 5–15% of the generated hydrogen. The preferential oxidation (PROX) of CO with O2 in hydrogen represents a more-efficient solution. Supported gold nanoparticles, with their high CO-oxidation activity and notoriously low hydrogenation activity, have long been examined as PROX catalysts, but have shown disappointingly low activity and selectivity. Here we show that, under the proper conditions, a commercial Au/Al2O3 catalyst can remove CO to below 10 ppm and still maintain an O2-to-CO2 selectivity of 80–90%. The key to maximizing the catalyst activity and selectivity is to carefully control the feed-flow rate and maintain one to two monolayers of water (a key CO-oxidation co-catalyst) on the catalyst surface

    The Susceptibility of Trypanosomatid Pathogens to PI3/mTOR Kinase Inhibitors Affords a New Opportunity for Drug Repurposing

    Get PDF
    In our study we describe the potency of established phosphoinositide-3-kinase (PI3K) and mammalian Target of Rapamycin (mTOR) kinase inhibitors against three trypanosomatid parasites: Trypanosoma brucei, T. cruzi, and Leishmania sp., which are the causative agents for African sleeping sickness, Chagas disease, and leishmaniases, respectively. We noted that these parasites and humans express similar kinase enzymes. Since these similar human targets have been pursued by the drug industry for many years in the discovery of cellular growth and proliferation inhibitors, compounds developed as human anti-cancer agents should also have effect on inhibiting growth and proliferation of the parasites. With that in mind, we selected eight established PI3K and mTOR inhibitors for profiling against these pathogens. Among these inhibitors is an advanced clinical candidate against cancer, NVP-BEZ235, which we demonstrate to be a highly potent trypanocide in parasite cultures, and in a mouse model of T. brucei infection. Additionally, we describe observations of these inhibitors' effects on parasite growth and other cellular characteristics

    Associated features in females with an FMR1 premutation

    Get PDF
    Abstract Changes in the fragile X mental retardation 1 gene (FMR1) have been associated with specific phenotypes, most specifically those of fragile X syndrome (FXS), fragile X tremor/ataxia syndrome (FXTAS), and fragile X primary ovarian insufficiency (FXPOI). Evidence of increased risk for additional medical, psychiatric, and cognitive features and conditions is now known to exist for individuals with a premutation, although some features have been more thoroughly studied than others. This review highlights the literature on medical, reproductive, cognitive, and psychiatric features, primarily in females, that have been suggested to be associated with changes in the FMR1 gene. Based on this review, each feature is evaluated with regard to the strength of evidence of association with the premutation. Areas of need for additional focused research and possible intervention strategies are suggested

    A critique of the Texas A & M Model when used to simulate beef cattle grazing pasture

    No full text
    This paper describes the experiences of the authors with the Texas A&M University model when used to simulate the production of beef cattle in a grazing system. Problems associated with the lack of interaction between pasture and animals, including the monthly time interval, supplementation and an input parameter (weight at maturity), are discussed

    Clinical implications of mitochondrial DNA quantification on pregnancy outcomes: a blinded prospective non-selection study

    No full text
    Study Question Can quantification of mitochondrial DNA (mtDNA) in trophectoderm (TE) biopsy samples provide information concerning the viability of a blastocyst, potentially enhancing embryo selection and improving IVF treatment outcomes? Summary Answer This study demonstrated that euploid blastocysts of good morphology, but with high mtDNA levels had a greatly reduced implantation potential. What is Known Already Better methods of embryo selection leading to IVF outcome improvement are necessary, as the transfer of chromosomally normal embryos of high morphological grade cannot guarantee the establishment of an ongoing pregnancy. The quantity of mtDNA in embryonic cells has been proposed as a new biomarker of viability—higher levels of mtDNA associated with reduced implantation potential. Study Design, Size, Duration mtDNA was quantified in 199 blastocysts, previously biopsied and shown to be chromosomally normal using preimplantation genetic testing for aneuploidy (PGT-A). These were generated by 174 couples (average female age 37.06 years). All patients underwent IVF in a single clinic. The study took place in a blinded, non-selection manner—i.e. mtDNA quantity was not known at the time of single embryo transfer. The fate of the embryos transferred was subsequently compared to the mtDNA levels measured. Participants/Materials, Settings, Methods Embryos were biopsied at the blastocyst stage. The TE samples obtained were subjected to whole genome amplification followed by comprehensive chromosome analysis via next generation sequencing. The same biopsy specimens were also tested using quantitative PCR, allowing highly accurate mtDNA quantification. After blastocyst transfer, the code used for blinding was broken and analysis undertaken to reveal whether the amount of mtDNA had any association with embryo implantation. Main Results and the Role of Chance mtDNA analysis of the 199 blastocysts revealed that 9 (5%) contained unusually high levels of mtDNA. All embryo transfers involved a single chromosomally normal blastocyst of good morphology. Of these, 121 (60%) led to ongoing pregnancies, 11(6%) led to biochemical pregnancies, and 10 (5%) spontaneously miscarried. All (100%) of these blastocysts had mtDNA levels considered to be normal/low. The remaining 57 (29%) blastocysts failed to implant. Among these non-viable embryos there were 9 (16%) with unusually high levels of mtDNA. This meant that the ongoing pregnancy rate for morphologically good, euploid blastocysts, with normal/low levels of mtDNA was 64% (121/190). In contrast, the ongoing pregnancy rate for the same type of embryos, but with elevated mtDNA levels, was 0/9 (0%). This difference was highly statistically significant (P Limitations Reasons for Caution To determine the true extent of any clinical benefits a randomized clinical trial will be necessary. Research is needed to improve understanding of the biology of mtDNA expansion. Wider Implications of the Findings This is the first investigation to evaluate the clinical impact of increased mtDNA in a prospective blinded manner. Results confirm that embryos with elevated mtDNA rarely implant, supporting its use as a viability biomarker. A total of 64% of euploid blastocysts with normal/low mtDNA implanted versus 60% for the cohort as a whole.</p

    Clinical implications of mitochondrial DNA quantification on pregnancy outcomes: a blinded prospective non-selection study

    No full text
    Study Question Can quantification of mitochondrial DNA (mtDNA) in trophectoderm (TE) biopsy samples provide information concerning the viability of a blastocyst, potentially enhancing embryo selection and improving IVF treatment outcomes? Summary Answer This study demonstrated that euploid blastocysts of good morphology, but with high mtDNA levels had a greatly reduced implantation potential. What is Known Already Better methods of embryo selection leading to IVF outcome improvement are necessary, as the transfer of chromosomally normal embryos of high morphological grade cannot guarantee the establishment of an ongoing pregnancy. The quantity of mtDNA in embryonic cells has been proposed as a new biomarker of viability—higher levels of mtDNA associated with reduced implantation potential. Study Design, Size, Duration mtDNA was quantified in 199 blastocysts, previously biopsied and shown to be chromosomally normal using preimplantation genetic testing for aneuploidy (PGT-A). These were generated by 174 couples (average female age 37.06 years). All patients underwent IVF in a single clinic. The study took place in a blinded, non-selection manner—i.e. mtDNA quantity was not known at the time of single embryo transfer. The fate of the embryos transferred was subsequently compared to the mtDNA levels measured. Participants/Materials, Settings, Methods Embryos were biopsied at the blastocyst stage. The TE samples obtained were subjected to whole genome amplification followed by comprehensive chromosome analysis via next generation sequencing. The same biopsy specimens were also tested using quantitative PCR, allowing highly accurate mtDNA quantification. After blastocyst transfer, the code used for blinding was broken and analysis undertaken to reveal whether the amount of mtDNA had any association with embryo implantation. Main Results and the Role of Chance mtDNA analysis of the 199 blastocysts revealed that 9 (5%) contained unusually high levels of mtDNA. All embryo transfers involved a single chromosomally normal blastocyst of good morphology. Of these, 121 (60%) led to ongoing pregnancies, 11(6%) led to biochemical pregnancies, and 10 (5%) spontaneously miscarried. All (100%) of these blastocysts had mtDNA levels considered to be normal/low. The remaining 57 (29%) blastocysts failed to implant. Among these non-viable embryos there were 9 (16%) with unusually high levels of mtDNA. This meant that the ongoing pregnancy rate for morphologically good, euploid blastocysts, with normal/low levels of mtDNA was 64% (121/190). In contrast, the ongoing pregnancy rate for the same type of embryos, but with elevated mtDNA levels, was 0/9 (0%). This difference was highly statistically significant (P &lt; 0.0001). Limitations Reasons for Caution To determine the true extent of any clinical benefits a randomized clinical trial will be necessary. Research is needed to improve understanding of the biology of mtDNA expansion. Wider Implications of the Findings This is the first investigation to evaluate the clinical impact of increased mtDNA in a prospective blinded manner. Results confirm that embryos with elevated mtDNA rarely implant, supporting its use as a viability biomarker. A total of 64% of euploid blastocysts with normal/low mtDNA implanted versus 60% for the cohort as a whole.</p
    corecore