229 research outputs found

    Excitons and Many-Electron Effects in the Optical Response of Single-Walled Boron Nitride Nanotubes

    Full text link
    We report first-principles calculations of the effects of quasiparticle self-energy and electron-hole interaction on the optical properties of single-walled BN nanotubes. Excitonic effects are shown to be even more important in BN nanotubes than in carbon nanotubes. Electron-hole interactions give rise to complexes of bright (and dark) excitons, which qualitatively alter the optical response. Excitons with binding energy larger than 2 eV are found in the (8,0) BN nanotubes. Moreover, unlike the carbon nanotubes, theory predicts that these exciton states are comprised of coherent supposition of transitions from several different subband pairs, giving rise to novel behaviors.Comment: 4 pages, 4 figure

    Scaling of excitons in carbon nanotubes

    Full text link
    Light emission from carbon nanotubes is expected to be dominated by excitonic recombination. Here we calculate the properties of excitons in nanotubes embedded in a dielectric, for a wide range of tube radii and dielectric environments. We find that simple scaling relationships give a good description of the binding energy, exciton size, and oscillator strength.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. Let

    Temperature Dependence of the Band Gap of Semiconducting Carbon Nanotubes

    Full text link
    The temperature dependence of the band gap of semiconducting single-wall carbon nanotubes (SWNTs) is calculated by direct evaluation of electron-phonon couplings within a ``frozen-phonon'' scheme. An interesting diameter and chirality dependence of Eg(T)E_g(T) is obtained, including non-monotonic behavior for certain tubes and distinct ``family'' behavior. These results are traced to a strong and complex coupling between band-edge states and the lowest-energy optical phonon modes in SWNTs. The Eg(T)E_g(T) curves are modeled by an analytic function with diameter and chirality dependent parameters; these provide a valuable guide for systematic estimates of Eg(T)E_g(T) for any given SWNT. Magnitudes of the temperature shifts at 300 K are smaller than 12 meV and should not affect (n,m)(n,m) assignments based on optical measurements.Comment: To appear in Phys. Rev. Let

    Exciton-plasmon states in nanoscale materials: breakdown of the Tamm-Dancoff approximation

    Full text link
    Within the Tamm-Dancoff approximation ab initio approaches describe excitons as packets of electron-hole pairs propagating only forward in time. However, we show that in nanoscale materials excitons and plasmons hybridize, creating exciton--plasmon states where the electron-hole pairs oscillate back and forth in time. Then, as exemplified by the trans-azobenzene molecule and carbon nanotubes, the Tamm-Dancoff approximation yields errors as large as the accuracy claimed in ab initio calculations. Instead, we propose a general and efficient approach that avoids the Tamm--Dancoff approximation, and correctly describes excitons, plasmons and exciton-plasmon states

    First-Principles Study of Electron Linewidths in Graphene

    Full text link
    We present first-principles calculations of the linewidths of low-energy quasiparticles in n-doped graphene arising from both the electron-electron and the electron-phonon interactions. The contribution to the electron linewidth arising from the electron-electron interactions vary significantly with wavevector at fixed energy; in contrast, the electron-phonon contribution is virtually wavevector-independent. These two contributions are comparable in magnitude at a binding energy of ~0.2 eV, corresponding to the optical phonon energy. The calculated linewidths, with both electron-electron and electron-phonon interactions included, explain to a large extent the linewidths seen in recent photoemission experiments.Comment: 5 pages, 3 figure

    Fano resonances in a three-terminal nanodevice

    Full text link
    The electron transport through a quantum sphere with three one-dimensional wires attached to it is investigated. An explicit form for the transmission coefficient as a function of the electron energy is found from the first principles. The asymmetric Fano resonances are detected in transmission of the system. The collapse of the resonances is shown to appear under certain conditions. A two-terminal nanodevice with an additional gate lead is studied using the developed approach. Additional resonances and minima of transmission are indicated in the device.Comment: 11 pages, 5 figures, 2 equations are added, misprints in 5 equations are removed, published in Journal of Physics: Condensed Matte

    Excitonic Effects on Optical Absorption Spectra of Doped Graphene

    Full text link
    We have performed first-principles calculations to study optical absorption spectra of doped graphene with many-electron effects included. Both self-energy corrections and electron-hole interactions are reduced due to the enhanced screening in doped graphene. However, self-energy corrections and excitonic effects nearly cancel each other, making the prominent optical absorption peak fixed around 4.5 eV under different doping conditions. On the other hand, an unexpected increase of the optical absorbance is observed within the infrared and visible-light frequency regime (1 ~ 3 eV). Our analysis shows that a combining effect from the band filling and electron-hole interactions results in such an enhanced excitonic effect on the optical absorption. These unique variations of the optical absorption of doped graphene are of importance to understand relevant experiments and design optoelectronic applications.Comment: 15 pages, 5 figures; Nano Lett., Article ASAP (2011

    On Quantum Markov Chains on Cayley tree II: Phase transitions for the associated chain with XY-model on the Cayley tree of order three

    Full text link
    In the present paper we study forward Quantum Markov Chains (QMC) defined on a Cayley tree. Using the tree structure of graphs, we give a construction of quantum Markov chains on a Cayley tree. By means of such constructions we prove the existence of a phase transition for the XY-model on a Cayley tree of order three in QMC scheme. By the phase transition we mean the existence of two now quasi equivalent QMC for the given family of interaction operators {K}\{K_{}\}.Comment: 34 pages, 1 figur

    Anomalous Quasiparticle Lifetime in Graphite: Band Structure Effects

    Get PDF
    We report ab initio calculation of quasiparticle lifetimes in graphite, as determined from the imaginary part of the self-energy operator within the GW aproximation. The inverse lifetime in the energy range from 0.5 to 3.5 eV above the Fermi level presents significant deviations from the quadratic behavior naively expected from Fermi liquid theory. The deviations are explained in terms of the unique features of the band structure of this material. We also discuss the experimental results from different groups and make some predictions for future experiments.Comment: 4 pages, 4 figures, submitted PR
    • …
    corecore