58 research outputs found

    Selective oxidation processes of organic substances in water by means of photocatalytic systems

    Get PDF
    Selective oxidation of benzyl alcohol into benzaldehyde in anoxic acidic aqueous solution, through a TiO2/Cu(II)/solar UV photocatalytic system, has been investigated both in a laboratory scaled reactor equipped with a high-pressure mercury lamp as well as in a solar pilot plant. During the laboratory experiments, benzaldehyde gave best results, in terms of yield, equal to 35% with respect to the initial benzyl alcohol concentration. A partial conversion of benzaldehyde to benzoic acid has also been observed. Traces of hydroxylated by-products have also been detected. On the basis of the formation of these species, a production of HO radicals has been thus inferred. The study has suggested that different operative parameters, such as the composition and amount of TiO2 photocatalyst, pH, ionic inorganic components in water, and the initial concentration of Cu(II) ions, play an important role in the photocatalytic selective oxidation of benzyl alcohol. The mechanism of photocatalytic selective oxidation of benzyl alcohol into benzaldehyde and benzaldehyde into benzoic acid has been investigated in the presence of TiO2 catalyst and cupric ions, as electron acceptor, in water at a pH = 2.0 and under deaerated conditions. A competitive adsorption has been proposed in which the aromatic substrates are adsorbed on the TiO2 surface and react with the positive holes. Whereas Cu(II) ions are reduced to Cu(0) by the photogenerated electrons. A new kinetic model has been developed by writing a set of mass balance equations for the main species involved in the photocatalytic oxidation process. The resulting mathematical model has been used for the analysis of the data collected at different starting substrates’ concentrations. During each of the selective photoxidation runs, it satisfactorily predicts the concentrations of Cu(II) species, organic substrates, and intermediates. The effect of ionic components, which compete with benzyl alcohol and benzaldehyde for the reaction with positive holes on the catalyst surface and behave as scavengers towards HO radicals, has been taken into account in the model. The values of some rate constants of the reactions of the holes with benzyl alcohol, benzaldehyde, Cu(II) species, and inorganic anions (sulfates and di-hydrogenophosphates), not available in the literature, have been estimated by a proper optimizing procedure. 7 The conversion of hydroxybenzyl alcohols, methoxybenzyl alcohols and nitrobenzyl alcohol into the corresponding aldehydes has been attempted by using the same process. The presence and position of substituent groups in the aromatic alcohols structure change the photocatalytic oxidation rates and product selectivities with respect to that previously observed for unsubstituted benzyl alcohol. In particular, the presence of both electron donating (hydroxy, methoxy groups) and electron withdrawing (nitro group) on the aromatic ring of the substrate causes a detrimental effect on the selectivity of the process with respect to that of benzyl alcohol. The technical feasibility of selective photocatalytic oxidation of benzyl alcohol to benzaldehyde, in aqueous solutions and in presence of cupric ions, has been then investigated in a solar pilot plant with Compound Parabolic Collectors. Under deaerated conditions, the presence of reduced copper species has been proved by XPS analysis. The results indicated that, at the end of the process, cupric species can be easily regenerated and reused, through a re-oxidation of reduced copper that is produced during the photolytic run, with air or oxygen in dark conditions. A figure-of-merit (ACM), proposed by the International Union of Pure and Applied Chemistry (IUPAC) and based on the collector area, has been estimated, under the proposed conditions, with the aim to provide a direct link to the solar-energy efficiency independently of the nature of the system. Generally speaking, it can be considered that the lower ACM values are, the higher is the system efficiency

    Direct photolysis of benzoylecgonine under UV irradiation at 254nm in a continuous flow microcapillary array photoreactor

    Get PDF
    Benzoylecgonine (BE) is the major metabolite of cocaine and a contaminant of emerging concern often detected in sewage treatment plant (STP) effluents and surface waters. In this study, an innovative microcapillary film (MCF) array photoreactor made of fluoropolymer material was used to determine the direct photolysis quantum yield of benzoylecgonine at 254 nm. The quantum yield of BE was found to be (6.22 ± 0.19) × 10-3 mol ein-1. The proposed methodology was validated by estimating the quantum yield of caffeine (7.48 10-4 ± 0.64) × 10-4 mol ein-1, which was found in agreement with results published in literature. The MCF uses a very small sample volume (in the order of 330μl per meter length of material) and allows extremely rapid photolysis with a short contact time ranging from a fraction of seconds to a few minutes. This new microfluidics approach presented in this study is particularly useful for determining the photochemical behavior of highly priced pharmaceuticals, illicit drugs, metabolites and uncommon or regulated substances

    Microaerobic Digestion of Low-Biodegradable Sewage Sludge: Effect of Air Dosing in Batch Reactors

    Get PDF
    The adoption of prolonged solid retention times during the biological treatment of urban wastewaters is a well-known strategy to reduce sewage sludge production. However, it also results in the production of a biological sludge with low percentages of biodegradable organic matter, also characterized by high humification degrees, which may hamper the anaerobic digestion treatment aimed at sludge stabilization. To accelerate the hydrolytic stage, the application of microaerobic conditions during the anaerobic digestion of low-biodegradable sewage sludge was investigated in this study. In particular, six bio-methanation tests of a real sewage sludge were carried out, introducing air in the bioreactors with doses ranging between 0 and 16.83 L air/kg VSin d, in order to evaluate the air dosage that optimizes the biomethane production and organic matter degradation. Notably, the lower air loading rates investigated in this study, such as 0.68 and 1.37 L air/kg VSin d, led to an increase in methane production of up to 19%, due to a higher degradation of total lipids and proteins. In addition, these microaerobic conditions also resulted in a decrease in the sludge humification degree and in lower volatile fatty acid accumulation

    Removal of benzoylecgonine from water matrices through UV254/H2O2 process: Reaction kinetic modeling, ecotoxicity and genotoxicity assessment

    Get PDF
    Benzoylecgonine (BE), the main cocaine metabolite, has been detected in numerous surface water and treatment plants effluents in Europe and there is urgent need for effective treatment methods. In this study, the removal of BE by the UV254/H2O2 process from different water matrices was investigated. By means of competition kinetics method, the kinetic constant of reaction between BE and the photogenerated hydroxyl radicals ([rad]OH) was estimated resulting in kOH/BE = 5.13 × 109 M−1 s−1. By-products and water matrices scavengers effects were estimated by numerical modeling of the reaction kinetics for the UV254/H2O2 process and validated in an innovative microcapillary film (MCF) array photoreactor and in a conventional batch photoreactor. The ecotoxicity of the water before and after treatment was evaluated with four organisms Raphidocelis subcapitata, Daphnia magna, Caenorhabditis elegans, and Vicia faba. The results provided evidence that BE and its transformation by-products do not have significant adverse effects on R. subcapitata, while D. magna underwent an increase of lipid droplets. C. elegans was the most sensitive to BE and its by-products. Furthermore, a genotoxicity assay, using V. faba, showed cytogenic damages during the cell mitosis of primary roots

    Innovative Materials and Processes for Removal of Biopersistent Pollutants

    No full text
    The aim of this Special Issue “Innovative Materials and Processes for Removal of Biopersistent Pollutants” (https://www [...

    Chemical Destabilization of Fresh and Spent Cutting Oil Emulsions: Differences between an Ecofriendly and Two Commercial Synthetic Lubricants

    No full text
    The aim of this study was to evaluate if eco-friendly lubricants had an additional advantage over conventional synthetic lubricants in terms of emulsion treatment of metalworking wastewater. To these purpose, two fresh commercial synthetic cutting oil emulsions were compared with an emulsion obtained from a new cutting oil produced from the reuse of slaughtering waste (CADT-605 from Kimya Srl, Bari, Italy). The breaking of the fresh emulsions was carried out with the addition of small amounts of sulfuric acid (2–20 mL/L) followed by pH neutralization by means of calcium hydroxide. During the two-step treatments, COD, BOD5 and non-ionic surfactant (NIS) concentrations were monitored in the aqueous phase. The results demonstrated that the best results were obtained with the emulsion produced with the bio-based lubricant. In addition, this cutting oil was tested in a metalworking plant within 30 days and the resulting spent emulsion was treated with the proposed process. In all the cases, the treatment led to a drastic decrease of the COD, BOD5 and NIS contents that allow the discharge of resulting aqueous phase in sewers or in surface water bodies, together with the other wastewater produced by the plant, in agreement with the Italian regulation

    Novel Bioderived Composites from Wastes

    No full text
    The recycling and reuse of solid wastes can be considered important challenges for civil and environmental applications in the frame of a more sustainable model of development and the consumption of new resources and energy [...

    Production and characterization of lightweight aggregates from municipal solid waste incineration fly-ash through single- and double-step pelletization process

    Get PDF
    The performance of a cold-bonding pelletization process was investigated for lightweight aggregates (LWAs) production from municipal solid waste incineration (MSWI) fly-ash (FA), by including multiple waste materials in the aggregate mixture. Before pelletization, FA was pre-treated by washing with water, which led to a reduction of chloride (66.79%) and sulphate (25.30%) content. This was further confirmed by XRF and XRD analyses, which showed a reduction of chloride elements and the content of chlorine crystalline phases. The pelletization process was carried out using both single- and double-step methods. For single-step pelletization, all the mixtures contained 80% FA, combined with various compositions of cement (5, 10, and 15%) and granulated blast furnace slag (GBFS) (5, 10, and 15%). For the double-step pelletization 30% of cement and 70% of marble sludge (MS) were added to each of the previous mixtures. The apparent density of all the aggregates varied between 1.60 and 1.87 g cm 3, suggesting their suitability to be classified as LWAs. Aggregates produced from double-step pelletization showed improved characteristics, with water absorption capacity and open porosity generally lower compared to the corresponding aggregates from the single-step pelletization. The best values of compressive (crushing) strength (almost 11 MPa) were observed for double-step pelletization aggregates with initial cement: GBFS mixture of 15%:5%. Results from leaching tests showed an overall significant release of chloride and sulphate. Nevertheless, leaching from double-step pelletization aggregates was reduced by 1.73- 4.02 times for chloride and 1.58-5.67 times for sulphate, further suggesting that better performances are achievable through the addition of an aggregate second layer
    corecore