5 research outputs found

    A systematic comparison of polar and semipolar Si-doped AlGaN alloys with high AlN content

    Get PDF
    Abstract With a view to supporting the development of ultra-violet light-emitting diodes and related devices, the compositional, emission and morphology properties of Si-doped n-type Al x Ga1-x N alloys are extensively compared. This study has been designed to determine how the different Al x Ga1-x N crystal orientations (polar (0001) and semipolar (11–22)) affect group-III composition and Si incorporation. Wavelength dispersive x-ray (WDX) spectroscopy was used to determine the AlN mole fraction (x ≈ 0.57–0.85) and dopant concentration (3 × 1018–1 × 1019 cm−3) in various series of Al x Ga1-x N layers grown on (0001) and (11–22) AlN/sapphire templates by metalorganic chemical vapor deposition. The polar samples exhibit hexagonal surface features with Ga-rich boundaries confirmed by WDX mapping. Surface morphology was examined by atomic force microscopy for samples grown with different disilane flow rates and the semipolar samples were shown to have smoother surfaces than their polar counterparts, with an approximate 15% reduction in roughness. Optical characterization using cathodoluminescence (CL) spectroscopy allowed analysis of near-band edge emission in the range 4.0–5.4 eV as well as various deep impurity transition peaks in the range 2.7–4.8 eV. The combination of spatially-resolved characterization techniques, including CL and WDX, has provided detailed information on how the crystal growth direction affects the alloy and dopant concentrations.</jats:p

    GaN/AlGaN multiple quantum wells grown on transparent and conductive (-201)-oriented β-Ga2O3 substrate for UV vertical light emitting devices

    Get PDF
    GaN/AlGaN multiple quantum wells (MQWs) are grown on a 2 ¯ 01-oriented β-Ga2O3 substrate. The optical and structural characteristics of the MQW structure are compared with those of a similar structure grown on sapphire. Scanning transmission electron microscopy and atomic force microscopy images show that the MQW structure exhibits higher crystalline quality of well-defined quantum wells when compared to a similar structure grown on sapphire. X-ray diffraction rocking curve and photoluminescence excitation analyses confirm the lower density of dislocation defects in the sample grown on a β-Ga2O3 substrate. A detailed analysis of time-integrated and time-resolved photoluminescence measurements shows that the MQWs grown on a β-Ga2O3 substrate are of higher optical quality. Our work indicates that the 2 ¯ 01-oriented β-Ga2O3 substrate can be a potential candidate for UV vertical emitting devices

    Scanning electron microscope as a flexible tool for investigating the properties of UV-emitting nitride semiconductor thin films

    Get PDF
    In this paper we describe the scanning electron microscopy techniques of electron backscatter diffraction, electron channeling contrast imaging, wavelength dispersive X-ray spectroscopy, and cathodoluminescence hyperspectral imaging. We present our recent results on the use of these non-destructive techniques to obtain information on the topography, crystal misorientation, defect distributions, composition, doping, and light emission from a range of UV-emitting nitride semiconductor structures. We aim to illustrate the developing capability of each of these techniques for understanding the properties of UV-emitting nitride semiconductors, and the benefits were appropriate, in combining the techniques

    Scanning electron microscope as a flexible tool for investigating the properties of UV-emitting nitride semiconductor thin films

    No full text
    In this paper we describe the scanning electron microscopy techniques of electron backscatter diffraction, electron channeling contrast imaging, wavelength dispersive X-ray spectroscopy, and cathodoluminescence hyperspectral imaging. We present our recent results on the use of these non-destructive techniques to obtain information on the topography, crystal misorientation, defect distributions, composition, doping, and light emission from a range of UV-emitting nitride semiconductor structures. We aim to illustrate the developing capability of each of these techniques for understanding the properties of UV-emitting nitride semiconductors, and the benefits were appropriate, in combining the techniques
    corecore