271 research outputs found

    Time-Dependent Random Walks and the Theory of Complex Adaptive Systems

    Full text link
    Motivated by novel results in the theory of complex adaptive systems, we analyze the dynamics of random walks in which the jumping probabilities are {\it time-dependent}. We determine the survival probability in the presence of an absorbing boundary. For an unbiased walk the survival probability is maximized in the case of large temporal oscillations in the jumping probabilities. On the other hand, a random walker who is drifted towards the absorbing boundary performs best with a constant jumping probability. We use the results to reveal the underlying dynamics responsible for the phenomenon of self-segregation and clustering observed in the evolutionary minority game.Comment: 5 pages, 2 figure

    Comment on "Mean First Passage Time for Anomalous Diffusion"

    Full text link
    We correct a previously erroneous calculation [Phys. Rev. E 62, 6065 (2000)] of the mean first passage time of a subdiffusive process to reach either end of a finite interval in one dimension. The mean first passage time is in fact infinite.Comment: To appear in Phys. Rev.

    Anomalous diffusion and generalized Sparre-Andersen scaling

    Full text link
    We are discussing long-time, scaling limit for the anomalous diffusion composed of the subordinated L\'evy-Wiener process. The limiting anomalous diffusion is in general non-Markov, even in the regime, where ensemble averages of a mean-square displacement or quantiles representing the group spread of the distribution follow the scaling characteristic for an ordinary stochastic diffusion. To discriminate between truly memory-less process and the non-Markov one, we are analyzing deviation of the survival probability from the (standard) Sparre-Andersen scaling.Comment: 5 pages, 3 figure

    The problem of analytical calculation of barrier crossing characteristics for Levy flights

    Full text link
    By using the backward fractional Fokker-Planck equation we investigate the barrier crossing event in the presence of Levy noise. After shortly review recent results obtained with different approaches on the time characteristics of the barrier crossing, we derive a general differential equation useful to calculate the nonlinear relaxation time. We obtain analytically the nonlinear relaxation time for free Levy flights and a closed expression in quadrature of the same characteristics for cubic potential.Comment: 12 pages, 2 figures, presented at 5th International Conference on Unsolved Problems on Noise, Lyon, France, 2008, to appear in J. Stat. Mech.: Theory and Experimen

    Generalized persistence exponents: an exactly soluble model

    Full text link
    It was recently realized that the persistence exponent appearing in the dynamics of nonequilibrium systems is a special member of a continuously varying family of exponents, describing generalized persistence properties. We propose and solve a simplified model of coarsening, where time intervals between spin flips are independent, and distributed according to a L\'evy law. Both the limit distribution of the mean magnetization and the generalized persistence exponents are obtained exactly.Comment: 4 pages, 3 figures Submitted to PR

    Record statistics for biased random walks, with an application to financial data

    Full text link
    We consider the occurrence of record-breaking events in random walks with asymmetric jump distributions. The statistics of records in symmetric random walks was previously analyzed by Majumdar and Ziff and is well understood. Unlike the case of symmetric jump distributions, in the asymmetric case the statistics of records depends on the choice of the jump distribution. We compute the record rate Pn(c)P_n(c), defined as the probability for the nnth value to be larger than all previous values, for a Gaussian jump distribution with standard deviation σ\sigma that is shifted by a constant drift cc. For small drift, in the sense of c/σ≪n−1/2c/\sigma \ll n^{-1/2}, the correction to Pn(c)P_n(c) grows proportional to arctan(n)(\sqrt{n}) and saturates at the value c2σ\frac{c}{\sqrt{2} \sigma}. For large nn the record rate approaches a constant, which is approximately given by 1−(σ/2πc)exp(−c2/2σ2)1-(\sigma/\sqrt{2\pi}c)\textrm{exp}(-c^2/2\sigma^2) for c/σ≫1c/\sigma \gg 1. These asymptotic results carry over to other continuous jump distributions with finite variance. As an application, we compare our analytical results to the record statistics of 366 daily stock prices from the Standard & Poors 500 index. The biased random walk accounts quantitatively for the increase in the number of upper records due to the overall trend in the stock prices, and after detrending the number of upper records is in good agreement with the symmetric random walk. However the number of lower records in the detrended data is significantly reduced by a mechanism that remains to be identified.Comment: 16 pages, 7 figure

    Record Statistics for Multiple Random Walks

    Full text link
    We study the statistics of the number of records R_{n,N} for N identical and independent symmetric discrete-time random walks of n steps in one dimension, all starting at the origin at step 0. At each time step, each walker jumps by a random length drawn independently from a symmetric and continuous distribution. We consider two cases: (I) when the variance \sigma^2 of the jump distribution is finite and (II) when \sigma^2 is divergent as in the case of L\'evy flights with index 0 < \mu < 2. In both cases we find that the mean record number grows universally as \sim \alpha_N \sqrt{n} for large n, but with a very different behavior of the amplitude \alpha_N for N > 1 in the two cases. We find that for large N, \alpha_N \approx 2 \sqrt{\log N} independently of \sigma^2 in case I. In contrast, in case II, the amplitude approaches to an N-independent constant for large N, \alpha_N \approx 4/\sqrt{\pi}, independently of 0<\mu<2. For finite \sigma^2 we argue, and this is confirmed by our numerical simulations, that the full distribution of (R_{n,N}/\sqrt{n} - 2 \sqrt{\log N}) \sqrt{\log N} converges to a Gumbel law as n \to \infty and N \to \infty. In case II, our numerical simulations indicate that the distribution of R_{n,N}/\sqrt{n} converges, for n \to \infty and N \to \infty, to a universal nontrivial distribution, independently of \mu. We discuss the applications of our results to the study of the record statistics of 366 daily stock prices from the Standard & Poors 500 index.Comment: 25 pages, 8 figure

    Record statistics and persistence for a random walk with a drift

    Full text link
    We study the statistics of records of a one-dimensional random walk of n steps, starting from the origin, and in presence of a constant bias c. At each time-step the walker makes a random jump of length \eta drawn from a continuous distribution f(\eta) which is symmetric around a constant drift c. We focus in particular on the case were f(\eta) is a symmetric stable law with a L\'evy index 0 < \mu \leq 2. The record statistics depends crucially on the persistence probability which, as we show here, exhibits different behaviors depending on the sign of c and the value of the parameter \mu. Hence, in the limit of a large number of steps n, the record statistics is sensitive to these parameters (c and \mu) of the jump distribution. We compute the asymptotic mean record number after n steps as well as its full distribution P(R,n). We also compute the statistics of the ages of the longest and the shortest lasting record. Our exact computations show the existence of five distinct regions in the (c, 0 < \mu \leq 2) strip where these quantities display qualitatively different behaviors. We also present numerical simulation results that verify our analytical predictions.Comment: 51 pages, 22 figures. Published version (typos have been corrected

    First passage and arrival time densities for L\'evy flights and the failure of the method of images

    Full text link
    We discuss the first passage time problem in the semi-infinite interval, for homogeneous stochastic Markov processes with L{\'e}vy stable jump length distributions λ(x)∼ℓα/∣x∣1+α\lambda(x)\sim\ell^{\alpha}/|x|^{1+\alpha} (∣x∣≫ℓ|x|\gg\ell), namely, L{\'e}vy flights (LFs). In particular, we demonstrate that the method of images leads to a result, which violates a theorem due to Sparre Andersen, according to which an arbitrary continuous and symmetric jump length distribution produces a first passage time density (FPTD) governed by the universal long-time decay ∼t−3/2\sim t^{-3/2}. Conversely, we show that for LFs the direct definition known from Gaussian processes in fact defines the probability density of first arrival, which for LFs differs from the FPTD. Our findings are corroborated by numerical results.Comment: 8 pages, 3 figures, iopart.cls style, accepted to J. Phys. A (Lett
    • …
    corecore