61 research outputs found

    ER network dynamics are differentially controlled by myosins XI-K, XI-C, XI-E, XI-I, XI-1, and XI-2

    Get PDF
    This document is protected by copyright and was first published by Frontiers. All rights reserved. It is reproduced with permission.The endoplasmic reticulum (ER) of higher plants is a complex network of tubules and cisternae. Some of the tubules and cisternae are relatively persistent, while others are dynamically moving and remodeling through growth and shrinkage, cycles of tubule elongation and retraction, and cisternal expansion and diminution. Previous work showed that transient expression in tobacco leaves of the motor-less, truncated tail of myosin XI-K increases the relative area of both persistent cisternae and tubules in the ER. Likewise, transient expression of XI-K tail diminishes the movement of organelles such as Golgi and peroxisomes. To examine whether other class XI myosins are involved in the remodeling and movement of the ER, other myosin XIs implicated in organelle movement, XI-1 (MYA1),XI-2 (MYA2), XI-C, XI-E, XI-I, and one not, XI-A, were expressed as motor-less tail constructs and their effect on ER persistent structures determined. Here, we indicate a differential effect on ER dynamics whereby certain class XI myosins may have more influence over controlling cisternalization rather than tubulation.Biotechnology & Biological Sciences Research Council (BBSRC)Biology department at Texas A and M Universit

    Modeling the geometry of the endoplasmic reticulum network

    Get PDF
    Conference ProceedingFirst International Conference, AlCoB 2014, held in July 2014 in Tarragona, Spain.We have studied the network geometry of the endoplasmic reticulum by means of graph theoretical and integer programming models. The purpose is to represent this structure as close as possible by a class of finite, undirected and connected graphs the nodes of which have to be either of degree three or at most of degree three. We determine plane graphs of minimal total edge length satisfying degree and angle constraints, and we show that the optimal graphs are close to the ER network geometry. Basically, two procedures are formulated to solve the optimization problem: a binary linear program, that iteratively constructs an optimal solution, and a linear program, that iteratively exploits additional cutting planes from different families to accelerate the solution process. All formulations have been implemented and tested on a series of real-life and randomly generated cases. The cutting plane approach turns out to be particularly efficient for the real-life testcases, since it outperforms the pure integer programming approach by a factor of at least 10. © 2014 Springer International Publishing

    Infiltration of tobacco leaf tissue

    Get PDF
    Method for transient expression in tobacco (N. tobacum and N. benthamiana) leaf lower epidermal cell

    Arabidopsis thaliana myosin XIK is recruited to the Golgi through interaction with a MyoB receptor

    Get PDF
    Perico et al. use co-expression analysis and a FRET-FLIM approach to show that the Arabidopsis MyoB myosin receptor, MRF7, triggers the relocation of Myosin XI-K to the Golgi. As such, this study provides evidence for plant myosin recruitment and control of organelle movement

    In vivo quantification of peroxisome tethering to chloroplasts in tobacco epidermal cells using optical tweezers

    Get PDF
    Open access articlePeroxisomes are highly motile organelles that display a range of motions within a short time frame. In static snapshots they can be juxtaposed to chloroplasts which has led to the hypothesis that they are physically interacting. Here, using optical tweezers we have tested the dynamic physical interaction in vivo. Using near-infrared optical tweezers, combined with TIRF microscopy, we were able to trap peroxisomes and approximate the forces involved in chloroplast association in vivo, and observed weaker tethering to additional unknown structures within the cell. We show that chloroplasts and peroxisomes are physically tethered through peroxules, a poorly described structure in plant cells. We suggest peroxules have a novel role in maintaining peroxisome-organelle interactions in the dynamic environment. This could be important for fatty acid mobilisation and photorespiration through interaction with oil bodies and chloroplasts, highlighting a fundamentally important role for organelle interactions for essential biochemistry and physiological processes.Biotechnology and Biological Sciences Research Council (BBSRC)Science and Technology Facilities Council (STFC)Wellcome Trust - Institutional Strategic Support AwardLeverhulme Trus
    corecore