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Abstract. We have studied the network geometry of the endoplasmic reticulum by means of graph
theoretical and integer programming models. The purpose is to represent this structure as close
as possible by a class of finite, undirected and connected graphs the nodes of which have to be
either of degree three or at most of degree three. We determine plane graphs of minimal total edge
length satisfying degree and angle constraints, and we show that the optimal graphs are close to the
ER network geometry. Basically, two procedures are formulated to solve the optimization problem:
a binary linear program, that iteratively constructs an optimal solution, and a linear program,
that iteratively exploits additional cutting planes from different families to accelerate the solution
process. All formulations have been implemented and tested on a series of real-life and randomly
generated cases. The cutting plane approach turns out to be particularly efficient for the real-life
testcases, since it outperforms the pure integer programming approach by a factor of at least 10.
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1 Problem

The endoplasmic reticulum (ER) is a membrane-bound organelle that forms a highly complicated inter-
connected network of tubules and flattened sacs (known as cisternae) [10, 6]. As the cortical ER in plant
cells occupies a very thin, almost two-dimensional, layer of cytoplasm beneath the plasma membrane,
our study of the ER network will be based on 2D approximations of the ER network in Tobacco leaf
epidermal cells. Figure 1 (a) shows an instance of live cell images of an ER network [13]. Transition
between tubules and cisternae can be highly dynamic and tubules can also dynamically change their
polygonal network [10]. The dynamic ER shape is suggested to be adaptable to the cells requirements
for ER function; for example, ER cisternae may be the preferred site of protein translocation while
tubules might be the preferred site for ER vesicle budding. As an expanding number of proteins have
been identified that mediate the generation and shape of the ER network, the stage is now set for in-
vestigations into the mechanisms regulating ER morphology within the cell. To be able to carry out
such investigations, better tools are required to quantify the morphology and dynamic rearrangements
that the ER undergoes. It is important to consider that whilst the proteins and stresses on the system
driving formation and changes in the remodelling may differ between eukaryotic systems, the network
geometry of the ER appears to be fairly well conserved in terms of it consisting of a polygonal network
of interconnected tubules and cisternae. Therefore, the problem considered here has universal appeal
towards understanding the constraints placed on ER network formation in all systems.

A quantitative analysis [11] of the ER network in tobacco leaf epidermal cells suggests that it is a
perturbed Euclidean Steiner network between terminals, where terminals are persistent nodes (static
elements of tubules) and degree-1 nodes. A Euclidean Steiner network is a locally minimal network, i.e.,
a network in which any local perturbation of non-terminal nodes would increase the total length of the
network [11]. This is analogous to Steiner trees in Euclidean space [8] in which the non-terminals (called
Steiner points) have degree 3. Note that local optima such as Euclidean Steiner networks might not give
a unique network topology, which is essential for modelling its dynamics. In this paper, we reanalyze live
cell confocal microscopy data of native ER networks from [13] in an attempt to understand whether there
is an optimization principle governing the network shape beyond local minimization. For quantitative
analysis, we abstract ER networks into geometric graphs using the image processing method from [11];
examples of abstracted graphs are shown in Figure 1 (b,c).

The ER membrane surface, serving as a transport network, is intuitively suspected to be a minimal
film [12]. Due to the existence of cycles commonly observed in networks, minimal spanning trees do

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/43096863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 L. Lemarchand, R. Euler, C. Lin, and I. Sparkes

(a) (b) (c)

Fig. 1. Illustration of the ER network and abstracted geometric graphs. (a) shows a static ER network, where
rectangle regions highlight a region with no ER cisternae. (b)-(c) show zoomed local networks in the rectangle
region and corresponding abstracted geometric graphs from two images. The abstracted graphs are obtained using
the image processing method introduced in [11], where markers ’+’ and ’o’ represent persistent and non-persistent
nodes, respectively, and lines represent edges (only the largest connected components in the chosen rectangle
regions are considered, and tubules extending outside the chosen region are not included in the abstracted
graphs). The experimental ER images are taken from [13] (www.plantcell.org, Copyright American Society of
Plant Biologists)

not sufficiently explain the shape of the ER network. Also, ER tubules generate 3-way junctions when
branching and angles at these degree-3 nodes follow a normal distribution with mean around 120o

[11]. Here, we include a degree constraint and an angle constraint for the nodes while minimizing total
edge-length, and we test whether the optimal graph under these constraints could mimic the ER network
geometry. To test the optimal solutions from our model, we quantitatively compare them to the abstracted
ER networks from a tobacco leaf epidermal cell.

2 Model

We construct two models: one basic model with only degree constraints and one full model with both
degree and angle constraints.

Basic Modelization Given a set of nodes V (corresponding to all the nodes in an abstracted ER network),
a subset Vb of V (corresponding to the degree-3 branching nodes in the network), the problem is to find
an undirected connected plane graph, whose nodes in Vb have degree 3, those outside Vb have degree at
most 3, and which minimizes the sum of the Euclidean distances associated with the connecting edges.

Full Modelization A full model is the basic model with an additional angle constraint. More precisely,
for a branching node u ∈ Vb, and its neighbours v1, v2, v3, we add the constraint that any two angles at
the node u formed from edges uvi(i = 1, 2, 3) have a sum no less than θ where θ is a given angle around
180o. The idea comes from the concern of force balance acting on the branching node. For each degree-3
branching node (tubule junction), as modeled in [11], each of the three ER filaments is assumed to apply
a membrane tension force on this tubule junction. Thus, it is unlikely that the tension forces are in the
same direction of a half plane, i.e., the sum of two angles of the branching node is less than 180o. This
angle constraint means that none of two angles of a branching node form a sum less than θ ≈ 180o in
the optimal solution.

3 Problem Formulation and Resolution

Given the complete edge-weighted graph G = (V,E,w) and a set Vb ⊆ V , the basic problem BP can be
formulated as follows:

minimize
∑

xuv∈E

wuvxuv (1)
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subject to 1 ≤
∑

v 6=u

xuv ≤ 3 ∀u ∈ V \ Vb, (2)

∑

v 6=u

xuv = 3 ∀u ∈ Vb, (3)

δ(W ) ≥ 1 ∀W ⊂ V, |W | ≥ 2 (4)

xuv + xwz ≤ 1 ∀u, v, w, z ∈ V, edges uv and wz cross (5)

xuv + xuw + xuz ≤ 2 ∀u ∈ Vb, v, w, z ∈ V, angle(vuw) + angle(wuz) < φ (6)

xuv ∈ {0, 1}, ∀uv ∈ E. (7)

We are looking for a minimum-weight, connected and plane, spanning subgraph of G, where:

– (1) the objective function represents the total Euclidean distance of the connecting subgraph;
– (2) and (3) represent the constraints on nodes including degree-3 nodes;
– (4) ensures the connectivity of the resulting subgraph, where δ(W ) =

∑

i∈W,j /∈W xij ;
– Angle equations (6) are set with a degree of φ = 180o. u is a branching node, and v, w, z are its

neighbours in a solution;
– xuv and xvu represent the same variable, and xuv = 1 iff edge uv is selected in the solution.

We remark that the complexity status of our problem still seems to be open. The particular case
of finding a minimum-weight 3-regular connected spanning subgraph of G is known to be NP-hard [3].
Moreover and throughout our calculations, we have observed only few solutions containing a pair of
crossing edges. Therefore, instead of adding constraints (5) at start, we check after each iteration whether
two edges cross, in case of which the corresponding constraint (5) is added on the fly.

Similar incompatibility constraints are added for the angle restrictions of the full model.

3.1 Binary Linear Programming Resolution

Problem BP is solved using the CPLEX MIPS solver as follows. The initial 0− 1 programming problem
is solved without connectivity constraints (4). Cuts are added iteratively in order to discard connected
components which cover only a subset of the nodes. More precisely, if W ⊂ V , with 1 < |W | < |V |, is
the node set of a connected component obtained as a result, we add the following constraint to BP:

δ(W ) ≥ 1. (8)

This process is repeated until the resulting graph is connected. As described above, a plane embedding
is checked for at each iteration.

3.2 Linear Programming Formulation

Let RP denote the linear relaxation of BP, i.e., the linear program obtained by replacing the con-
straints (7) by 0 ≤ xuv ≤ 1 ∀uv ∈ E. Relaxing BP to RP allows to replace the IP-solver by an LP-one,
but we are now faced with the possibility of fractional optimal solutions.

Three types of search algorithms have been used to ”cut off” such fractional solutions, leading to 4
different separation procedures.

The first one (2-cut procedure) is based on a min-cut algorithm. If an s−t-cut leads to a cut value < 1,
the connectivity constraint is violated. This situation is detected using the Stoer-Wagner algorithm [14].
If V1, V2 is the corresponding partition of V , we add the constraint

δ(V1) ≥ 1 (9)

The second one relies on a p-partition of the node set V , P = {V1, V2, ..., Vp}. In this case we add the
constraint

1

2

∑

δ(Vi) ≥ (p − 1) (10)

The problem is now to find a partition of V , whose inequality is violated by the current optimal (and
fractional) solution.

We have implemented 2 separation procedures for this type. The r-cut procedure is based on a
recursive splitting of partitions using a min-cut algorithm, whereas the k-cut procedure is a 1-edge-like
contraction procedure.
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– The r-cut procedure for multi-cuts is inspired by [1]. Given a p-partition, find a minimum cut in each
part of it. For the cut with minimum value among all these min-cuts, break the associated component
to obtain a (p + 1)-partition.

– The k-cut procedure for multi-cuts goes as follows. The partition is induced by the components of
the graph G′ = (V,E′ = {e ∈ E|xe ≥ α}), with α ∈]0..1] as given by the current optimal solution.
Case α = 1 corresponds to the component search of BP. This separation procedure is applied for
α = 0.8, 0.6, 0.4.

The third one is a b-cut procedure based on blossom inequalities arising from Edmonds’ description
of matching-polytopes [5]. For this we just recall that the incidence vectors of u-capacitated b-matchings

are the solutions of the following constraints:

∑

e∈δ(i)

xe ≤ bi ∀i ∈ V, (11)

0 ≤ xe ≤ ue ∀e ∈ E, (12)

xe ∈ Z ∀e ∈ E, (13)

and if we let bi = 3 ∀i ∈ V and ue = 1 ∀e ∈ E, the following blossom inequalities

∑

e∈E(W )

xe +
∑

f∈F

xf ≤

⌊

3|W | + |F |

2

⌋

,∀W ⊂ V, F ⊂ δ(W ) with 3|W | + |F | odd (14)

are valid for any solution of our basic problem.
The separation procedure presented in [9] is based on cut-trees. In our implementation we use Gus-

field’s algorithm [7] for cut-tree computations, and we also make use of the igraph C library [4].
The initial binary algorithm is thus split into two phases :

– Linear phase : Solve RP with an LP-solver, and add constraints for all disconnected components.
When the obtained solution is connected but fractional, find iteratively minimal cuts (2-cuts of value
less than one, k-cuts or b-cuts, whose corresponding inequality is currently violated) and add the
corresponding constraints.

– Binary phase : When no more efficient cuts are found, solve the resulting 0-1 programming problem
with an MIPS solver.

According to the kind of linear constraints we add in the linear phase, this leads to 5 versions of the
mixed linear/binary algorithms:

– BP: the binary formulation,
– LP: the linear formulation,
– LPr: the linear formulation with recursive cuts,
– LPrk: the linear formulation with both recursive and parametric cuts.
– LPrkb: the linear formulation with recursive, parametric and blossom cuts.

4 Tests

All formulations have been implemented using the CPLEX API in C. A set of 50 real-life testcases has
been provided. Randomly generated testcases, with distance values in the range [1..100] are also used
for the tests, especially with a large number of nodes. We look at the comparative results in terms of
runtimes for both the binary and the linear formulation as well as the different cutting techniques for
the basic problem solution. Random sets are used to evaluate the behaviour of the different algorithms
with respect to problem characteristics such as nodes and percentage of branching nodes.

Finally, real-life testcases are used to evaluate the behaviour of the algorithms in view of the different
pieces of the model.

4.1 Runtimes for the Solution of the Basic Problem

We examine the runtimes of 5 different algorithms for solving the basic model: (1) the binary formulation
BP, (2) the linear formulation LP, (3) the linear formulation with recursive cuts LPr, (4) the linear
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Algorithm 1: General Algorithm. BP (solveBinary = True), LP (solveBinary = False), LPr

(solveBinary = False, checkRcuts = True), LPrk (solveBinary = False, checkRcuts = True,
checkKcuts = True) and LPrkb (solveBinary = False, checkRcuts = True, checkKcuts = True,
checkBlossom = True) are derivated from this general algorithm

Data: a set of points V with a subset of branching nodes Vb, a set I of incompatible edge pairs {e, e′}, a
set of boolean variables
{solveBinary, checkP lan, check2cuts, checkRcuts, checkKcuts, checkBlossom}

Result: a connected plane subgraph
1 begin

2 graph G := (V, E), with E := V 2, wuv the Euclidean distance between u and v

3 generate problem P with constraints (2) and (3)
4 add constraints (5) for all edge pairs in I

5 if solveBinary = True then

6 add constraints (7) to P

7 end

8 f := solve (P )
9 if Gf = (V, f) is connected and binary then

10 if checkP lan = True then

11 if checkP lanarity(f) = OK then goto 31
12 else add corresponding constraints (5)

13 end

14 end

15 if Gf = (V, f) is not connected then

16 compute component set W = {W1, ..., Wp}
17 add corresponding constraints (4)

18 end

19 if solveBinary = False then

20 if check2cuts = True then check and add corresponding constraints (9)
21 if checkRcuts = True then check and add corresponding constraints (10)
22 if checkKcuts = True then check and add corresponding constraints (10)
23 if checkBlossom = True then check and add corresponding constraints (14)
24 if no new constraint added then

25 add constraint (7) to P

26 solveBinary := True

27 end

28 end

29

30 goto 8

31 end
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formulation with both recursive and parametric cuts LPrk with α = {0.4, 0.6, 0.8}, and finally (5) LPrkb,
that is LPrk plus the blossom-cut separation procedure.

We have generated a set of problems of increasing size (in number of nodes) with distance values in
the range [1..100] and with 30 % of branching nodes. Problem sizes of Figure 2(a) are comparable to
real-life testcases : the average percentage of branching nodes is 27.54 %, and the number of nodes is
in the range [12..76] for the testcase set of Figure 3. We measure the average runtimes of 10 trials for
the different algorithms, according to problem size. Corresponding results are presented in Figure 2 (a).
Figure 2 (b) shows results for much larger problems obtained with BP and, the most efficient procedure,
LPrk.
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Fig. 2. (a) BP and LPx formulation runtimes for series of 10 random testcases with distances in [10..100] and
30 % branching nodes. (b) BP and LPrk runtimes (and standard error) on large testcase series with 45% of
branching nodes

For random testcases of Figure 2 (a), LPrk outperforms slightly the BP approach. Adding blossom
inequalities in LPrkb is time-consuming but does not improve the average results of LPrk. BP runtimes
dramatically increase with problem size.

For large instances (Figure 2 (b)), the efficiency of LPrk is clearly visible for problems with up to
400 nodes, number which is much greater than that of the real testcases. For more than 400 nodes this
advantage disappears, because the solver swaps into Binary programming mode rather early in relation
to the runtime of the whole optimization process. Time won in early steps does not lead to significant
improvements in cost for later steps. For those large cases, LPrk is often faster, but suffers from a lack of
stability, with some instances degrading heavily the average performance, as shown by the large standard
error of the runtimes for this procedure.

Figure 3 shows the runtimes for the different real-life testcases (frames) and the different procedures.
The average runtimes are, respectively, 102.29 s, 98.96 s, 6.67 s, 0.33 s and 0.63 s for BP, LP, LPr, LPrk

and LPrkb.
Figure 3 clearly shows that LPrk is very efficient for real-life testcases when compared to other

approaches for solving the basic problem. Its maximum runtime over the 50 cases is 5.58 s, compared to
9.68 s for LPrkb, 78 s for LPr and two non-terminated cases for BP and LP.

Runtimes according to the number of branching nodes We have generated a set of problems of increasing
size (in number of nodes), and we have measured the total runtimes of LPrk for different percentages of
branching nodes within each instance.

As shown in Figure 4, the runtimes of LPrk depend heavily on the number of branching nodes within
the problem, that we recall to have a fixed degree of 3. For large size random problems, the algorithm
behaves correctly provided the percentage of branching nodes is above 40.

Conclusion The LPrk approach is very efficient for solving real-life problems with the basic model, in
comparison to other methods, especially BP. LPrk is also the most efficient for a large part of the random
problems, i.e., those with up to 400 nodes. However, it gives bad runtimes for a few instances.

The percentage of branching nodes has a great influence on the runtimes whatever the solution
algorithm is. The higher this percentage, the better the runtimes.
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Fig. 3. (a) BP and all LP formulation runtimes for real-life testcases. (b) LPrk and LPrkb only
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Fig. 4. Runtimes of LPrk according to the size of the problem and the number of branching nodes. Distances are
in the range [1..100]

4.2 Runtimes of Real-life Testcases with the Full Model

Figure 5 shows the runtimes for the 50 testcases and the full model (see section 2) solved with both the BP

and LPrk algorithms. As opposed to the basic model, constraints on angles are added. Planarity problems
arise only in two cases. Thus, it is not necessary to check for a plane embedding at each iteration. Instead,
it suffices to check it at the end, and the solution process is restarted after the addition of appropriate
constraints whenever needed.

With the LPrk solver, the full model is solved in 46.52 s on average compared to 0.33 s on average for
the basic model. One case is very costly and represents half of the total runtime. If this case is removed,
the average runtime is 21.75 s, which is 2 orders of magnitude more than the basic model runtime. With
BP, mean runtime was 96.92 s for the full model. In this series, one case (different from the one already
mentioned) was very time consuming again. If removed, the mean runtime is 64.24 s, 3 times the average
runtime for LPrk.

These last results show that the complexity as induced by the model’s advanced constraints leads to a
runtime explosion for the LPrk algorithm, although the problem is still solvable with LPrk in reasonable
time. BP runtimes remain stable when taking into account the full model. But those runtimes are still
more than two times higher than those of the LPrk approach on average for the 50 frames testbench.
Finally, notice that sometimes one of the algorithms behaves well while the other spends a lot of time
for solving a particular case.

In the next section, we show, however, that those additional constraints are mandatory in order to
obtain results that are close to real-life networks. That means that the runtime aspect would be crucial if
larger networks are to be computed. Instead of relying on the MILP solver branch-and-bound algorithm
when cutting planes are not found anymore, we could exploit these cuts further by embedding them into
a branch-and-cut procedure. However, this implies the development of a specific branching strategy. This
could help improving the runtimes, especially for those instances where the MILP solver is called early.
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Fig. 5. For the full model, BP and LPrk runtimes for real-life testcases

4.3 Real-life Testcase Results and a Comparison with Actual Topologies

We have implemented the proposed technique to find optimal graphs for N = 50 problem instances
both for the basic model (with degree-3 constraints on nodes Vb ⊂ V ) and the full model (with angle
constraints as illustrated in Section 2 in addition to the degree-3 constraints). The nodes are abstracted
from native ER networks in chosen regions with no cisternae using the image processing method given in
[11]. Figure 6 shows different optimal graphs for given sets of nodes and degree-3 nodes together with the
abstracted ER network. To quantify the difference between these optimal graphs and the abstracted ER
network we may use the concepts of effective similarity, error correcting matching and angle distribution.

We define an effective similarity s(G1, G2) between two graphs G1, G2 as the average of two percent-
ages: percentage of edges in G1 that do appear in G2 and percentage of edges in G2 that do appear in
G1. This measurement can be calculated via the adjacency matrices of the two graphs. The measurement
s(G1, G2) ranges from 0 to 1; it equals 0 if none of the edges coincides in the two graphs and it equals 1
if the connecting structures between the two graphs are the same. Note that the adjacency matrix AdjG
is symmetric whenever G is.

As a complement, and in analogy to the notion of error correcting graph matching [2], we define a
normalized error correcting matching m(G1, G2) between two graphs G1, G2 over the same set of nodes
as the ratio of the minimum number of edit operations (edge addition and edge deletion) necessary to
transform one graph into the other, to the number of edges of the complete graph with the same set of
nodes. This measurement can be calculated via the adjacency matrix as well. It also ranges from 0 (no
correction needed) to 1.
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Fig. 6. A comparison between: an abstracted ER network (a), a minimal spanning tree (b), an optimal graph
from the basic model (c), an optimal graph from the full model with θ = 180o (d). Their total lengths are
627.8, 508.3, 558.0 and 602.3, respectively, in units of pixel. The effective similarities of (b-d) with respect to the
abstracted network in (a) are 0.726, 0.812 and 0.938, respectively, while the normalized error correcting matchings
with respect to the abstracted network in (a) are 0.120, 0.012 and 0.004, respectively. The underlying ER image
in (a) is from the imaging data in [13]
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Table 1. A comparison of optimal solutions G1 from different models with the abstracted ER network G in
terms of similarity s(G, G1) and matching m(G, G1). Data indicate the mean±error of the mean (N=50). T
tests show significant differences on s(G, G1), m(G, G1) between the case where G1 is a minimal spanning tree
and the case where G1 is an optimal graph from the basic model (p < 0.0001 for both measurements), and
slight differences between the basic and the full model with θ = 160 (p = 0.0058, p = 0.0136 for similarity and
matching, respectively). One-way ANOVE tests show no significant differences between graphs from the full
model (p = 0.1083, p = 0.0869 for similarity and matching, respectively)

N=50 MSP model basic model full model (θ = 160o) full model (θ = 170o) full model (θ = 180o)

s(G, G1) 0.7376 ± 0.0015 0.9065 ± 0.0103 0.9185 ± 0.0092 0.9270 ± 0.0081 0.9271 ± 0.0084

m(G, G1) 0.2930 ± 0.0195 0.0106 ± 0.0011 0.0096 ± 0.0011 0.0087 ± 0.0010 0.0087 ± 0.0011
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Fig. 7. A comparison of angle distributions from an abstracted ER network (a), an optimal graph from the basic
model (b) and an optimal graph from the full model with θ = 160o (c) and with θ = 180o (d). Observe, that the
distributions in (c) and (d) are much closer (with p-values of 0.863 and 0.975, respectively) to that in (b) (with a
p-value of 0.111) when compared to the distribution in (a). The p-values are the asymptotic p-values for the null
hypothesis that distribution in (b) ((c) and (d)) and that in (a) are from the same distribution. Angles are taken
from all 3 angles of degree-3 nodes in all 50 problem instances. The sample size is N = 1428 in each distribution

Figure 6 illustrates an example of an ER network in comparison to different optimal graphs (including
minimal spanning tree, optimal graph from the basic model and optimal graph from the full model).
The optimal graphs from the full model show a higher similarity and a lower error correcting matching.
Moreover, we show in Table 1 that overall the ER network is closer to an optimal graph from the full
model than that with/without degree constraints, and the θ in the angle constraint would not lead to
a significant difference in terms of similarity and error correcting matching when compared to the ER
network. In addition, Figure 7 shows that the distribution of angles of degree-3 nodes in the model with
both degree and angle constraints is much closer to that of the abstracted ER networks than that in
the minimal spanning trees and in the optimal graphs with only degree constraints. This suggests that
beyond degree constraints, angle constraints are necessary for understanding the principles governing the
ER network geometry.

In addition, considering that the nodes abstracted from the ER network using the image processing
method in [11] may have errors in their position, we have analyzed the sensitivity of optimal solutions with
respect to perturbations of the node positions by randomly modifying one pixel among the 8 connected
neighbours. Note, that in the presence of angle constraints, optimal solutions should change when a pair
of nodes forming a sum of angles close to the critical θ-value are perturbed. Figure 8 shows examples
of optimal graphs with perturbed nodes together with those without such a perturbation. However,
statistical analysis on similarity and error correcting matching with the ER networks for 10% perturbed
nodes gives m(G,G1) = 0.9200±0.0029(N = 500), s(G,G1) = 0.0096±000039(N = 500). This indicates
that there is no significant difference in these measurements between optimal graphs with/without node
perturbation.

5 Discussion

In this article, a quantitative comparison between optimal graphs and the ER network geometry suggests
that the ER tubule network in the native state minimizes the total tubule length between branching nodes
and non-branching nodes. The difference between an optimal graph and the corresponding ER network
might be that there are other principles behind the ER network geometry. For instance, Figure 9 shows
that the ER network contains a cycle while the optimal graph for this instance does not have a cycle.
We suspect this ER network to be more robust in structure. Indeed, we have compared the number of
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Fig. 8. A comparison of graphs with perturbed node positions. (a) shows an abstracted ER network. (b) shows
the optimal graph from the full model with θ = 180o. (c) and (d) show optimal graphs with perturbed node
positions (shown as larger bold dots) from the full model with θ = 180o. The underlying ER image in (a) is from
the imaging data in [13]

cycles and the natural connectivity for all 50 times points in the data set, and we show in Figure 10
that both the number of cycles and the natural connectivity in the abstracted ER networks are overall
larger than in corresponding optimal graphs. The natural connectivity λ(G) [15] is a measurement of
structural robustness of a graph G in terms of a weighted sum of numbers of closed walks. More precisely,
λ(G) = log(

∑∞
k=0

nk

k! /|V |), where nk is the number of closed walks of length k. Another reason for cycles
disappearing in an optimal solution might be due to the choice of the region, where branching junctions
in the global ER network might only have one or two edges (branching junctions connecting with tubules
outside the chosen regions are not included in the abstracted graph) and thus are not in the set of
degree-3 nodes. To avoid this, one may wish to choose a non-rectangle region where branching junctions
are all of degree 3 in the abstracted graph. However, these branching junctions might be connected with
ER cisternae and thus techniques need to be developed to distinguish ER cisternae and ER tubules.
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Fig. 9. Left: an abstracted ER network. Right: the optimal graph from the full model (θ = 180o). They only
differ in one edge shown as a dotted line in the right panel. The underlying ER image in the left panel is from
the imaging data in [13]

The study of the optimal principles behind ER network geometry could, in the future, allow pre-
dictions of network dynamics as a consequence of node movement. This would require image processing
methods to track the node movements and one challenge for this is the dramatic dynamics of ER networks
themselves where nodes may appear and disappear. We leave these aspects for future study.

As to algorithmic efficiency, there should be place for improvement. Setting V = Vb and omitting
crossing and angle constraints leads to the minimum-weight d-regular connected spanning subgraph
problem with d = 3. For d = 2, we encounter the traveling salesman problem, well-studied both for its
polyhedral structure and algorithmic aspects. A suitable transfer of this knowledge to our case, combined
with the modifications indicated at the end of section 4.2, could considerably improve the efficiency of
our method.
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networks (circles) and optimal graphs (crossings) from the full model with θ = 180o for each data set
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