24 research outputs found

    Magnetism of iron: from the bulk to the monoatomic wire

    Get PDF
    The magnetic properties of iron (spin and orbital magnetic moments, magnetocrystalline anisotropy energy) in various geometries and dimensionalities are investigated by using a parametrized tight-binding model in an ss, pp and dd atomic orbital basis set including spin polarization and the effect of spin-orbit coupling. The validity of this model is well established by comparing the results with those obtained by using an ab-initio code. This model is applied to the study of iron in bulk bcc and fcc phases, (110)(110) and (001)(001) surfaces and to the monatomic wire, at several interatomic distances. New results are derived. The variation of the component of the orbital magnetic moment on the spin quantization axis has been studied as a function of depth, revealing a significant enhancement in the first two layers, especially for the (001)(001) surface. It is found that the magnetic anisotropy energy is drastically increased in the wire and can reach several meV. This is also true for the orbital moment, which in addition is highly anisotropic. Furthermore it is shown that when the spin quantization axis is neither parallel nor perpendicular to the wire the average orbital moment is not aligned with the spin quantization axis. At equilibrium distance the easy magnetization axis is along the wire but switches to the perpendicular direction under compression. The success of this model opens up the possibility of obtaining accurate results on other elements and systems with much more complex geometries

    Magnetic and electronic properties of bulk and clusters of FePtL10_0

    Get PDF
    International audienceAn efficient tight-binding model including magnetism and spin-orbit interactions is extended to metallic alloys. The tight-binding parameters are determined from a fit to bulk {\it ab-initio} calculations of each metal and rules are given to get the heteroatomic parameters. Spin and orbital magnetic moment as well as magneto-crystalline anisotropy are derived. We apply this method to bulk FePt L10_0 and the results are compared with success to {\it ab-initio} ones when existing. Finally this model is applied to a set of FePt L10_0 clusters and physical trends are derived

    Magnetocrystalline anisotropy energy of Fe(001)(001), Fe(110)(110) slabs and nanoclusters: a detailed local analysis within a tight-binding model

    Get PDF
    We report tight-binding (TB) calculations of magnetocrystalline anisotropy energy (MAE) of Iron slabs and nanoclusters with a particuler focus on local analysis. After clarifying various concepts and formulations for the determination of MAE, we apply our realistic TB model to the analysis of the magnetic anisotropy of Fe(001)(001), Fe(110)(110) slabs and of two large Fe clusters with (001)(001) and (110)(110) facets only: a truncated pyramid and a truncated bipyramid containg 620 and 1096 atoms, respectively. It is shown that the MAE of slabs originates mainly from outer layers, a small contribution from the bulk gives rise, however, to an oscillatory behavior for large thicknesses. Interestingly, the MAE of the nanoclusters considered is almost solely due to (001)(001) facets and the base perimeter of the pyramid. We believe that this fact could be used to efficiently control the anisotropy of Iron nanoparticles and could also have consequences on their spin dynamics

    Sensing of the melanoma biomarker TROY using silicon nanowire field-effect transistors

    Full text link
    Antibody-functionalized silicon nanowire field-effect transistors have been shown to exhibit excellent analyte detection sensitivity enabling sensing of analyte concentrations at levels not readily accessible by other methods. One example where accurate measurement of small concentrations is necessary is detection of serum biomarkers, such as the recently discovered tumor necrosis factor receptor superfamily member TROY (TNFRSF19), which may serve as a biomarker for melanoma. TROY is normally only present in brain but it is aberrantly expressed in primary and metastatic melanoma cells and shed into the surrounding environment. In this study, we show the detection of different concentrations of TROY in buffer solution using top-down fabricated silicon nanowires. We demonstrate the selectivity of our sensors by comparing the signal with that obtained from bovine serum albumin in buffer solution. Both the signal size and the reaction kinetics serve to distinguish the two signals. Using a fast-mixing two-compartment reaction model we are able to extract the association and dissociation rate constants for the reaction of TROY with the antibody immobilized on the sensor surface.The authors thank Biosite Diagnostics (San Diego, CA) for providing TROY antibodies. The authors acknowledge NIH, NSF, and Battelle Memorial Institute for support of this work. (NIH; NSF; Battelle Memorial Institute)https://pubs.acs.org/doi/pdf/10.1021/acssensors.6b00017Accepted manuscrip

    Detection of the melanoma biomarker TROY using silicon nanowire field-effect transistors

    Full text link
    Antibody-functionalized silicon nanowire field-effect transistors have been shown to exhibit excellent analyte detection sensitivity enabling sensing of analyte concentrations at levels not readily accessible by other methods. One example where accurate measurement of small concentrations is necessary is detection of serum biomarkers, such as the recently discovered tumor necrosis factor receptor superfamily member TROY (TNFRSF19), which may serve as a biomarker for melanoma. TROY is normally only present in brain but it is aberrantly expressed in primary and metastatic melanoma cells and shed into the surrounding environment. In this study, we show the detection of different concentrations of TROY in buffer solution using top-down fabricated silicon nanowires. We demonstrate the selectivity of our sensors by comparing the signal with that obtained from bovine serum albumin in buffer solution. Both the signal size and the reaction kinetics serve to distinguish the two signals. Using a fast-mixing two-compartment reaction model, we are able to extract the association and dissociation rate constants for the reaction of TROY with the antibody immobilized on the sensor surface

    An efficient magnetic tight-binding method for transition metals and alloys

    Get PDF
    International audienceAn efficient parameterized self-consistent tight-binding model for transition metals usings, p and d valence atomic orbitals as a basis set is presented. The parameters of our tight-binding model for pure elements are determined from a fit to bulk ab-initiocalculations. Avery simple procedure that does not necessitate any further fitting is proposed to deal with systems made of several chemical elements. This model is extended to spin (and orbital) polarized materials by adding Stoner-like and spin–orbit interactions. Collinear and non-collinear magnetism as well as spin-spirals are considered. Finally the electron–electron intra-atomic interactions are taken into account in the Hartree–Fock approximation. This leads to an orbital dependence of these interactions, which is of a great importance for low-dimensional systems and for a quantitative description of orbital polarization and magneto-crystalline anisotropy. Several examples are discussed.Nous présentons un modèle de liaisons fortes paramétré et auto-cohérent utilisant une base d’orbitales atomiques s, p, et d pour décrire les électrons de valence des métaux de transition. Les paramètres du modèle sont déterminés à partir d’un ajustement non linéaire sur des résultats de calculs ab initio d’éléments purs en volume. Notre procédure ne nécessite aucun paramètre ni ajustement supplémentaire pour l’étendre aux systèmes avec plusieurs atomes de natures chimiques différentes. Nous avons généralisé notre modèle aux matériaux présentant une polarisation de spin et orbitale à l’aide de termes de Stoner et de couplage spin–orbite. Nous traitons aussi bien le magnétisme colinéaire que non colinéaire ainsi que les spirales de spin. Enfin nous montrons comment prendre en compte l’interaction électron–électron intra-atomique dans l’approximation de Hartree–Fock. Cela introduit une dépendance orbitale des interactions qui peut s’avérer importante dans les systèmes de basse dimensionalité et pour décrire correctement l’anisotropie magnéto- cristalline et la polarisation orbitale. Nous illustrons notre propos à l’aide de plusieurs exemples

    Effects of inter-site Coulomb interactions on ferromagnetism: Application to Fe, Co and Ni

    Get PDF
    We reanalyze the condition for metallic ferromagnetism in the framework of the tight-binding approximation and investigate the consequences of the inter-site Coulomb interactions using the Hartree-Fock approximation. We first consider a non-degenerate ss band and we show that the inter-site interactions modify the occurrence of ferromagnetism, and we derive a generalized Stoner criterion. We analyze the main effects due to the renormalization of the hopping integrals by the inter-site Coulomb interactions. These effects are strongly dependent on the relative values of the inter-site electron-electron interactions and on the shape of the density of states as illustrated by a study of cubic crystals from which we establish general trends. We then investigate a realistic spdspd tight-binding model, including intra (Coulomb and exchange) and inter-site charge-charge Coulomb integrals. This model is used to study the electronic structure (band structure, densities of states, magnetic moment) of bulk ferromagnetic 3d3d transition metals Fe(bcc), Co(hcp and fcc) and Ni(fcc). An excellent agreement with local spin density functional calculations is obtained for the three metals, in particular concerning the relative widths of the majority and minority spin bands. Thus our tight-binding Hartree-Fock model provides a consistent interpretation of this effect

    Orbital contribution to the magnetic properties of iron as a function of dimensionality

    Get PDF
    The orbital contribution to the magnetic properties of Fe in systems of decreasing dimensionality (bulk, surfaces, wire and free clusters) is investigated using a tight-binding hamiltonian in an s,p,s, p, and dd atomic orbital basis set including spin-orbit coupling and intra-atomic electronic interactions in the full Hartree-Fock (HF) scheme, i.e., involving all the matrix elements of the Coulomb interaction with their exact orbital dependence. Spin and orbital magnetic moments and the magnetocrystalline anisotropy energy (MAE) are calculated for several orientations of the magnetization. The results are systematically compared with those of simplified hamiltonians which give results close to those obtained from the local spin density approximation. The full HF decoupling leads to much larger orbital moments and MAE which can reach values as large as 1ÎĽB\mu_B and several tens of meV, respectively, in the monatomic wire at the equilibrium distance. The reliability of the results obtained by adding the so-called Orbital Polarization Ansatz (OPA) to the simplified hamiltonians is also discussed. It is found that when the spin magnetization is saturated the OPA results for the orbital moment are in qualitative agreement with those of the full HF model. However there are large discrepancies for the MAE, especially in clusters. Thus the full HF scheme must be used to investigate the orbital magnetism and MAE of low dimensional systems

    Diffusion rates of Cu adatoms on Cu(111) in the presence of an adisland nucleated at FCC or HCP sites

    Get PDF
    The surface diffusion of Cu adatoms in the presence of an adisland at FCC or HCP sites on Cu(111) is studied using the EAM potential derived by Mishin {\it et al.} [Phys. Rev. B {\bf 63} 224106 (2001)]. The diffusion rates along straight (with close-packed edges) steps with (100) and (111)-type microfacets (resp. step A and step B) are first investigated using the transition state theory in the harmonic approximation. It is found that the classical limit beyond which the diffusion rates follow an Arrhenius law is reached above the Debye temperature. The Vineyard attempt frequencies and the (static) energy barriers are reported. Then a comparison is made with the results of more realistic classical molecular dynamic simulations which also exhibit an Arrhenius-like behavior. It is concluded that the corresponding energy barriers are completely consistent with the static ones within the statistical errors and that the diffusion barrier along step B is significantly larger than along step A. In contrast the prefactors are very different from the Vineyard frequencies. They increase with the static energy barrier in agreement with the Meyer-Neldel compensation rule and this increase is well approximated by the law proposed by Boisvert {\it et al.} [Phys. Rev. Lett. {\bf 75} 469 (1995)]. As a consequence, the remaining part of this work is devoted to the determination of static energy barriers for a large number of diffusion events that can occur in the presence of an adisland. In particular, it is found that the corner crossing diffusion process for triangular adislands is markedly different for the two types of borders (A or B). From this set of results the diffusion rates of the most important atomic displacements can be predicted and used as input in Kinetic Monte-Carlo simulations
    corecore