42 research outputs found

    A Regional Assessment of Medicaid Access to Outpatient Orthopaedic Care: The Influence of Population Density and Proximity to Academic Medical Centers on Patient Access

    Get PDF
    Access to care is limited for patients with Medicaid with many conditions, but data investigating this relationship in the orthopaedic literature are limited. The purpose of this study was to investigate the relationship between health insurance status and access to care for a diverse group of adult orthopaedic patients, specifically if access to orthopaedic care is influenced by population density or distance from academic teaching hospitals

    Enhanced cellular infiltration of human adipose-derived stem cells in allograft menisci using a needle-punch method

    Get PDF
    Abstract Background The meniscus plays a crucial role in knee joint stability, load transmission, and stress distribution. Meniscal tears are the most common reported knee injuries, and the current standard treatment for meniscal deficiency is meniscal allograft transplantation. A major limitation of this approach is that meniscal allografts do not have the capacity to remodel and maintain tissue homeostasis due to a lack of cellular infiltration. The purpose of this study was to provide a new method for enhanced cellular infiltration in meniscal allografts. Methods Twenty medial menisci were collected from cadaveric human sources and split into five experimental groups: (1) control native menisci, (2) decellularized menisci, (3) decellularized menisci seeded with human adipose-derived stem cells (hASC), (4) decellularized needle-punched menisci, and (5) decellularized needle-punched menisci seeded with hASC. All experimental allografts were decellularized using a combined method with trypsin EDTA and peracetic acid. Needle punching (1-mm spacing, 28 G microneedle) was utilized to improve porosity of the allograft. Samples were recellularized with hASC at a density of 250 k/g of tissue. After 28 days of in vitro culture, menisci were analyzed for mechanical, biochemical, and histological characteristics. Results Menisci maintained structural integrity and material properties (compressive equilibrium and dynamic moduli) throughout preparations. Increased DNA content was observed in the needle-punched menisci but not in the samples without needle punching. Histology confirmed these results, showing enhanced cellular infiltration in needle-punched samples. Conclusions The enhanced infiltration achieved in this study could help meniscal allografts better remodel post-surgery. The integration of autologous adipose-derived stem cells could improve long-term efficacy of meniscal transplantation procedures by helping to maintain the meniscus in vivo

    SIGNATURE: A workbench for gene expression signature analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The biological phenotype of a cell, such as a characteristic visual image or behavior, reflects activities derived from the expression of collections of genes. As such, an ability to measure the expression of these genes provides an opportunity to develop more precise and varied sets of phenotypes. However, to use this approach requires computational methods that are difficult to implement and apply, and thus there is a critical need for intelligent software tools that can reduce the technical burden of the analysis. Tools for gene expression analyses are unusually difficult to implement in a user-friendly way because their application requires a combination of biological data curation, statistical computational methods, and database expertise.</p> <p>Results</p> <p>We have developed SIGNATURE, a web-based resource that simplifies gene expression signature analysis by providing software, data, and protocols to perform the analysis successfully. This resource uses Bayesian methods for processing gene expression data coupled with a curated database of gene expression signatures, all carried out within a GenePattern web interface for easy use and access.</p> <p>Conclusions</p> <p>SIGNATURE is available for public use at <url>http://genepattern.genome.duke.edu/signature/</url>.</p

    Subsequent Surgery After Revision Anterior Cruciate Ligament Reconstruction: Rates and Risk Factors From a Multicenter Cohort

    Get PDF
    BACKGROUND: While revision anterior cruciate ligament reconstruction (ACLR) can be performed to restore knee stability and improve patient activity levels, outcomes after this surgery are reported to be inferior to those after primary ACLR. Further reoperations after revision ACLR can have an even more profound effect on patient satisfaction and outcomes. However, there is a current lack of information regarding the rate and risk factors for subsequent surgery after revision ACLR. PURPOSE: To report the rate of reoperations, procedures performed, and risk factors for a reoperation 2 years after revision ACLR. STUDY DESIGN: Case-control study; Level of evidence, 3. METHODS: A total of 1205 patients who underwent revision ACLR were enrolled in the Multicenter ACL Revision Study (MARS) between 2006 and 2011, composing the prospective cohort. Two-year questionnaire follow-up was obtained for 989 patients (82%), while telephone follow-up was obtained for 1112 patients (92%). If a patient reported having undergone subsequent surgery, operative reports detailing the subsequent procedure(s) were obtained and categorized. Multivariate regression analysis was performed to determine independent risk factors for a reoperation. RESULTS: Of the 1112 patients included in the analysis, 122 patients (11%) underwent a total of 172 subsequent procedures on the ipsilateral knee at 2-year follow-up. Of the reoperations, 27% were meniscal procedures (69% meniscectomy, 26% repair), 19% were subsequent revision ACLR, 17% were cartilage procedures (61% chondroplasty, 17% microfracture, 13% mosaicplasty), 11% were hardware removal, and 9% were procedures for arthrofibrosis. Multivariate analysis revealed that patients aged <20 years had twice the odds of patients aged 20 to 29 years to undergo a reoperation. The use of an allograft at the time of revision ACLR (odds ratio [OR], 1.79; P = .007) was a significant predictor for reoperations at 2 years, while staged revision (bone grafting of tunnels before revision ACLR) (OR, 1.93; P = .052) did not reach significance. Patients with grade 4 cartilage damage seen during revision ACLR were 78% less likely to undergo subsequent operations within 2 years. Sex, body mass index, smoking history, Marx activity score, technique for femoral tunnel placement, and meniscal tearing or meniscal treatment at the time of revision ACLR showed no significant effect on the reoperation rate. CONCLUSION: There was a significant reoperation rate after revision ACLR at 2 years (11%), with meniscal procedures most commonly involved. Independent risk factors for subsequent surgery on the ipsilateral knee included age <20 years and the use of allograft tissue at the time of revision ACLR

    Anterior Cruciate Ligament Injury, Return to Play, and Reinjury in the Elite Collegiate Athlete: Analysis of an NCAA Division I Cohort

    No full text
    Graft survivorship, reinjury rates, and career length are poorly understood after anterior cruciate ligament (ACL) reconstruction in the elite collegiate athlete. The purpose of this study was to examine the outcomes of ACL reconstruction in a National Collegiate Athletic Association (NCAA) Division I athlete cohort. Case series; Level of evidence, 4. A retrospective chart review was performed of all Division I athletes at a single public university from 2000 to 2009 until completion of eligibility. Athletes were separated into 2 cohorts: those who underwent precollegiate ACL reconstruction (PC group) and those who underwent intracollegiate reconstruction (IC group). Graft survivorship, reoperation rates, and career length information were collected. Thirty-five athletes were identified with precollegiate reconstruction and 54 with intracollegiate reconstruction. The PC group had a 17.1% injury rate with the original graft, with a 20.0% rate of a contralateral ACL injury. For the IC group, the reinjury rates were 1.9% with an ACL graft, with an 11.1% rate of a contralateral ACL injury after intracollegiate ACL reconstruction. The athletes in the PC group used 78% of their total eligibility (average, 3.11 years). The athletes in the IC group used an average of 77% of their remaining NCAA eligibility; 88.3% of those in the IC group played an additional non-redshirt year after their injury. The reoperation rate for the PC group was 51.4% and was 20.4% for the IC group. Reoperation and reinjury rates are high after ACL reconstruction in the Division I athlete. Precollegiate ACL reconstruction is associated with a very high (37.1%) rate of repeat ACL reinjuries to the graft or opposite knee. The majority of athletes are able to return to play after successful reconstruction

    In Vivo Compositional Changes in the Articular Cartilage of the Patellofemoral Joint Following Anterior Cruciate Ligament Reconstruction

    No full text
    OBJECTIVE: To compare T1ρ relaxation times of the medial and lateral regions of the patella and femoral trochlea at 6 and 12 months following anterior cruciate ligament reconstruction (ACLR) on the ACLR and contralateral extremity. Greater T1ρ relaxation times are associated with a lower proteoglycan density of articular cartilage. METHODS: This study involved 20 individuals (11 males, 9 females; mean ± SD age 22 ± 3.9 years, weight 76.11 ± 13.48 kg, and height 178.32 ± 12.32 cm) who underwent a previous unilateral ACLR using a patellar tendon autograft. Magnetic resonance images from both extremities were acquired at 6 and 12 months post-ACLR. Voxel by voxel T1ρ relaxation times were calculated using a 5-image sequence. The medial and lateral regions of the femoral trochlea and patellar articular cartilage were manually segmented on both extremities. Separate extremity (ACLR and contralateral extremity) by time (6 months and 12 months) analysis of variance tests were performed for each region (P \u3c 0.05). RESULTS: For the medial patella and lateral trochlea, T1ρ relaxation times increased in both extremities between 6 and 12 months post-ACLR (medial patella P = 0.012; lateral trochlea P = 0.043). For the lateral patella, T1ρ relaxation times were significantly greater on the contralateral extremity compared to the ACLR extremity (P = 0.001). The T1ρ relaxation times of the medial trochlea on the ACLR extremity were significantly greater at 6 (P = 0.005) and 12 months (P \u3c 0.001) compared to the contralateral extremity. T1ρ relaxation times of the medial trochlea significantly increased from 6 to 12 months on the ACLR extremity (P = 0.003). CONCLUSION: Changes in T1ρ relaxation times occur within the first 12 months following ACLR in specific regions of the patellofemoral joint on the ACLR and contralateral extremity

    Engineering 3D-Bioplotted scaffolds to induce aligned extracellular matrix deposition for musculoskeletal soft tissue replacement

    No full text
    <p><b><i>Purpose</i></b>: Tissue engineering and regenerative medicine approaches have the potential to overcome the challenges associated with current treatment strategies for meniscus injuries. 3D-Bioplotted scaffolds are promising, but have not demonstrated the ability to guide the formation of aligned collagenous matrix <i>in vivo</i>, which is critical for generating functional meniscus tissue. In this study, we evaluate the ability of 3D-Bioplotted scaffold designs with varying interstrand spacing to induce the deposition of aligned matrix <i>in vivo</i>. <b><i>Materials and Methods</i></b>: 3D-Bioplotted polycaprolactone scaffolds with 100, 200, or 400 μm interstrand spacing were implanted subcutaneously in a rat model for 4, 8, or 12 weeks. Scaffolds were harvested, paraffin-embedded, sectioned, and stained to visualize cell nuclei and collagen. Quantitative image analysis was used to evaluate cell density, matrix fill, and collagen fiber alignment within the scaffolds. <b><i>Results</i></b>: By 4 weeks, cells had infiltrated the innermost scaffold regions. Similarly, collagenous matrix filled interstrand regions nearly completely by 4 weeks. By 12 weeks, aligned collagen was present in all scaffolds. Generally, alignment along the scaffold strands increased over time for all three interstrand spacing groups. Distribution of collagen fiber alignment angles narrowed as interstrand spacing decreased. <b><i>Conclusions</i></b>: 3D-Bioplotted scaffolds allow for complete cell infiltration and collagenous matrix production throughout the scaffold. The ability to use interstrand spacing as a means of controlling the formation of aligned collagen <i>in vivo</i> was demonstrated, which helps establish a design space for scaffold-based meniscus tissue engineering.</p

    Tissue-specific changes in size and shape of the ligaments and tendons of the porcine knee during post-natal growth.

    No full text
    Prior studies have analyzed growth of musculoskeletal tissues between species or across body segments; however, little research has assessed the differences in similar tissues within a single joint. Here we studied changes in the length and cross-sectional area of four ligaments and tendons, (anterior cruciate ligament, patellar tendon, medial collateral ligament, lateral collateral ligament) in the tibiofemoral joint of female Yorkshire pigs through high-field magnetic resonance imaging throughout growth. Tissue lengths increased by 4- to 5-fold from birth to late adolescence across the tissues while tissue cross-sectional area increased by 10-20-fold. The anterior cruciate ligament and lateral collateral ligament showed allometric growth favoring change in length over change in cross-sectional area while the patellar tendon and medial collateral ligament grow in an isometric manner. Additionally, changes in the length and cross-sectional area of the anterior cruciate ligament did not increase as much as in the other ligaments and tendon of interest. Overall, these findings suggest that musculoskeletal soft tissue morphometry can vary within tissues of similar structure and within a single joint during post-natal growth

    Association of Jump-Landing Biomechanics With Tibiofemoral Articular Cartilage Composition 12 Months After ACL Reconstruction

    No full text
    Background: Excessively high joint loading during dynamic movements may negatively influence articular cartilage health and contribute to the development of posttraumatic osteoarthritis after anterior cruciate ligament reconstruction (ACLR). Little is known regarding the link between aberrant jump-landing biomechanics and articular cartilage health after ACLR. Purpose/Hypothesis: The purpose of this study was to determine the associations between jump-landing biomechanics and tibiofemoral articular cartilage composition measured using T1ρ magnetic resonance imaging (MRI) relaxation times 12 months postoperatively. We hypothesized that individuals who demonstrate alterations in jump-landing biomechanics, commonly observed after ACLR, would have longer T1ρ MRI relaxation times (longer T1ρ relaxation times associated with less proteoglycan density). Study Design: Cross-sectional study; Level of evidence, 3. Methods: A total of 27 individuals with unilateral ACLR participated in this cross-sectional study. Jump-landing biomechanics (peak vertical ground-reaction force [vGRF], peak internal knee extension moment [KEM], peak internal knee adduction moment [KAM]) and T1ρ MRI were collected 12 months postoperatively. Mean T1ρ relaxation times for the entire weightbearing medial femoral condyle, lateral femoral condyle (global LFC), medial tibial condyle, and lateral tibial condyle (global LTC) were calculated bilaterally. Global regions of interest were further subsectioned into posterior, central, and anterior regions of interest. All T1ρ relaxation times in the ACLR limb were normalized to the uninjured contralateral limb. Linear regressions were used to determine associations between T1ρ relaxation times and biomechanics after accounting for meniscal/chondral injury. Results: Lower ACLR limb KEM was associated with longer T1ρ relaxation times for the global LTC (ΔR2 = 0.24; P =.02), posterior LTC (ΔR2 = 0.21; P =.03), and anterior LTC (ΔR2 = 0.18; P =.04). Greater ACLR limb peak vGRF was associated with longer T1ρ relaxation times for the global LFC (ΔR2 = 0.20; P =.02) and central LFC (ΔR2 = 0.15; P =.05). Peak KAM was not associated with T1ρ outcomes. Conclusion: At 12 months postoperatively, lower peak KEM and greater peak vGRF during jump landing were related to longer T1ρ relaxation times, suggesting worse articular cartilage composition

    Investigation of multiphasic 3D‐bioplotted scaffolds for site‐specific chondrogenic and osteogenic differentiation of human adipose‐derived stem cells for osteochondral tissue engineering applications

    No full text
    Osteoarthritis is a degenerative joint disease that limits mobility of the affected joint due to the degradation of articular cartilage and subchondral bone. The limited regenerative capacity of cartilage presents significant challenges when attempting to repair or reverse the effects of cartilage degradation. Tissue engineered medical products are a promising alternative to treat osteochondral degeneration due to their potential to integrate into the patient's existing tissue. The goal of this study was to create a scaffold that would induce site-specific osteogenic and chondrogenic differentiation of human adipose-derived stem cells (hASC) to generate a full osteochondral implant. Scaffolds were fabricated using 3D-bioplotting of biodegradable polycraprolactone (PCL) with either β-tricalcium phosphate (TCP) or decellularized bovine cartilage extracellular matrix (dECM) to drive site-specific hASC osteogenesis and chondrogenesis, respectively. PCL-dECM scaffolds demonstrated elevated matrix deposition and organization in scaffolds seeded with hASC as well as a reduction in collagen I gene expression. 3D-bioplotted PCL scaffolds with 20% TCP demonstrated elevated calcium deposition, endogenous alkaline phosphatase activity, and osteopontin gene expression. Osteochondral scaffolds comprised of hASC-seeded 3D-bioplotted PCL-TCP, electrospun PCL, and 3D-bioplotted PCL-dECM phases were evaluated and demonstrated site-specific osteochondral tissue characteristics. This technique holds great promise as cartilage morbidity is minimized since autologous cartilage harvest is not required, tissue rejection is minimized via use of an abundant and accessible source of autologous stem cells, and biofabrication techniques allow for a precise, customizable methodology to rapidly produce the scaffold
    corecore