13 research outputs found

    Micro-computed tomography permits enhanced visualization of mycangia across development and between sexes in Euwallacea ambrosia beetles.

    No full text
    Symbiosis can facilitate the development of specialized organs in the host body to maintain relationships with beneficial microorganisms. To understand the developmental and genetic mechanisms by which such organs develop, it is critical to first investigate the morphology and developmental timing of these structures during the onset of host development. We utilized micro-computed tomography (μCT) to describe the morphology and development of mycangia, a specialized organ, in the Asian ambrosia beetle species Euwallacea validus which maintains a mutualistic relationship with the Ascomycete fungus, Fusarium oligoseptatum. We scanned animals in larval, pupal and adult life stages and identified that mycangia develop during the late pupal stage. Here we reconcile preliminary evidence and provide additional morphological data for a second paired set of structures, including the superior, medial mycangia and an inferior, lateral pair of pouch-like structures, in both late-stage pupae and adult female beetles. Furthermore, we report the possible development of rudimentary, or partially developed pairs of medial mycangia in adult male beetles which has never been reported for any male Xyleborini. Our results illustrate the validity of μCT in observing soft tissues and the complex nature of mycangia morphology and development

    Developmental genetic underpinnings of a symbiosis-associated organ in the fungus-farming ambrosia beetle Euwallacea validus

    No full text
    Abstract Mutualistic interactions between organisms often mediate the innovation of traits essential to maintain the relationship. Yet our understanding of these interactions has been stymied due to various hurdles in studying the genetics of non-model animals. To understand the genetic mechanisms by which such traits develop, we examined the function of genes breathless (btl), trachealess (trh), and doublesex in the development of a novel fungus-carrying organ (mycangium) that facilitates an obligate relationship between fungus-farming ambrosia beetles and specific fungal partners. Gene knockdown by RNA interference and subsequent micro-computed tomography visualization suggest btl and trh are required for initiation of mycangia and that tubulogenesis may have been co-opted for early mycangial development

    Psychoactive plant- and mushroom-associated alkaloids from two behavior modifying cicada pathogens

    Get PDF
    Entomopathogenic fungi routinely kill their hosts before releasing infectious spores, but select species keep insects alive while sporulating, which enhances dispersal. Transcriptomics and metabolomics studies of entomopathogens with post-mortem dissemination from their parasitized hosts have unraveled infection processes and host responses, yet mechanisms underlying active spore transmission by Entomophthoralean fungi in living insects remain elusive. Here we report the discovery, through metabolomics, of the plant-associated amphetamine, cathinone, in four Massospora cicadina -infected periodical cicada populations, and the mushroom-associated tryptamine, psilocybin, in annual cicadas infected with Massospora platypediae or Massospora levispora , which appear to represent a single fungal species. The absence of some fungal enzymes necessary for cathinone and psilocybin biosynthesis along with the inability to detect intermediate metabolites or gene orthologs are consistent with possibly novel biosynthesis pathways in Massospora . The neurogenic activities of these compounds suggest the extended phenotype of Massospora that modifies cicada behavior to maximize dissemination is chemically-induced
    corecore