844 research outputs found

    Can Technological Artefacts Be Moral Agents?

    Get PDF
    In this paper we discuss the hypothesis that, ‘moral agency is distributed over both humans and technological artefacts’, recently proposed by Peter-Paul Verbeek. We present some arguments for thinking that Verbeek is mistaken. We argue that artefacts such as bridges, word processors, or bombs can never be (part of) moral agents. After having discussed some possible responses, as well as a moderate view proposed by Illies and Meijers, we conclude that technological artefacts are neutral tools that are at most bearers of instrumental value

    Fatal myocardial infarction after lung resection in a patient with prophylactic preoperative coronary stenting†

    Get PDF
    In this report we present the case of a 77-yr-old man who underwent resection of the upper lobe of the left lung for a carcinoma, six weeks after percutaneous transluminal coronary angioplasty (PTCA) with stenting of the left anterior descending (LAD) and circumflex coronary arteries. Antiplatelet therapy with clopidogrel was interrupted two weeks before surgery to allow for epidural catheter placement and to minimize haemorrhage. The surgical procedure was uneventful. In the immediate postoperative period, however, the patient suffered severe myocardial ischaemia. Emergency coronary angiography showed complete thrombotic occlusion of the LAD stent. In spite of successful recanalization, reinfarction occurred and the patient died in cardiogenic shock. Prophylactic preoperative coronary stenting may put the patient at risk of stent thrombosis if surgery cannot be postponed for three months. In such cases, other strategies such as perioperative ÎČ-blockade for preoperative cardiac management should be considered. Br J Anaesth 2004; 92: 743-

    Influence of airway‐occluding instruments on airway pressure during jet ventilation for rigid bronchoscopy

    Get PDF
    We measured changes in airway pressure (Paw) caused by microsurgical instruments introduced into a rigid bronchoscope during high frequency jet ventilation (HFJV). With approval of the institutional Ethics Committee, 10 adults undergoing elective tracheobronchial endoscopy and endosonography during general anaesthesia were investigated. Inflation of an endosonography probe balloon in the left main stem bronchus caused airway obstruction. Pressure measurements proximal and distal to the obstruction were compared after three degrees of obstruction (0%, 50% and 90%) and with two different driving pressure settings. Airway obstruction increased the mean (sd) peak inspiratory pressure (PIP) from 7.5 (2.6) to 9.5 (3.5) mm Hg for 2 atm (P=0.0008) and from 9.7 (3.7) to 13.0 (5.1) mm Hg for 3 atm (P=0.0001). Airway obstruction did not alter peripheral PIP (7.2 (4.1) to 7.1 (3.7) mm Hg for 2 atm and 8.8 (4.3) to 9.4 (5.2) mm for 3 atm), but resulted in an end‐expiratory pressure (EEP) beyond the narrowing being significantly greater than in the unobstructed airway (2.5 (3.4) to 5.5 (3.7) mm Hg for 2 atm; P=0.0005) and 3.2 (3.6) to 8.0 (4.3) mm for 3 atm; P<0.0001). Severe airway narrowing increases inspiratory pressure proximal and expiratory pressure distal to the obstruction in relation to the applied driving pressure. Since the distal EEP never exceeded PIP, even near‐total airway obstruction should not cause severe lung distension or barotrauma in subjects with normal lungs. Br J Anaesth 2000; 85: 463-

    Structures of ribosome-bound initiation factor 2 reveal mechanism of subunit association

    No full text
    Throughout the four phases of protein biosynthesis—initiation, elongation, termination, and recycling—the ribosome is controlled and regulated by at least one specified translational guanosine triphosphatase (trGTPase). Although the structural basis for trGTPase interaction with the ribosome has been solved for the last three steps of translation, the high-resolution structure for the key initiation trGTPase, initiation factor 2 (IF2), complexed with the ribosome, remains elusive. We determine the structure of IF2 complexed with a nonhydrolyzable guanosine triphosphate analog and initiator fMet-tRNAiMet in the context of the Escherichia coli ribosome to 3.7-Å resolution using cryo-electron microscopy. The structural analysis reveals previously unseen intrinsic conformational modes of the 70S initiation complex, establishing the mutual interplay of IF2 and initator transfer RNA (tRNA) with the ribsosome and providing the structural foundation for a mechanistic understanding of the final steps of translation initiation

    A model for collisions in granular gases

    Full text link
    We propose a model for collisions between particles of a granular material and calculate the restitution coefficients for the normal and tangential motion as functions of the impact velocity from considerations of dissipative viscoelastic collisions. Existing models of impact with dissipation as well as the classical Hertz impact theory are included in the present model as special cases. We find that the type of collision (smooth, reflecting or sticky) is determined by the impact velocity and by the surface properties of the colliding grains. We observe a rather nontrivial dependence of the tangential restitution coefficient on the impact velocity.Comment: 11 pages, 2 figure

    Cooling dynamics of a dilute gas of inelastic rods: a many particle simulation

    Full text link
    We present results of simulations for a dilute gas of inelastically colliding particles. Collisions are modelled as a stochastic process, which on average decreases the translational energy (cooling), but allows for fluctuations in the transfer of energy to internal vibrations. We show that these fluctuations are strong enough to suppress inelastic collapse. This allows us to study large systems for long times in the truely inelastic regime. During the cooling stage we observe complex cluster dynamics, as large clusters of particles form, collide and merge or dissolve. Typical clusters are found to survive long enough to establish local equilibrium within a cluster, but not among different clusters. We extend the model to include net dissipation of energy by damping of the internal vibrations. Inelatic collapse is avoided also in this case but in contrast to the conservative system the translational energy decays according to the mean field scaling law, E(t)\propto t^{-2}, for asymptotically long times.Comment: 10 pages, 12 figures, Latex; extended discussion, accepted for publication in Phys. Rev.

    Patient Blood Management Bundles to Facilitate Implementation.

    Get PDF
    More than 30% of the world's population are anemic with serious economic consequences including reduced work capacity and other obstacles to national welfare and development. Red blood cell transfusion is the mainstay to correct anemia, but it is also 1 of the top 5 overused procedures. Patient blood management (PBM) is a proactive, patient-centered, and multidisciplinary approach to manage anemia, optimize hemostasis, minimize iatrogenic blood loss, and harness tolerance to anemia. Although the World Health Organization has endorsed PBM in 2010, many hospitals still seek guidance with the implementation of PBM in clinical routine. Given the use of proven change management principles, we propose simple, cost-effective measures enabling any hospital to reduce both anemia and red blood cell transfusions in surgical and medical patients. This article provides comprehensive bundles of PBM components encompassing 107 different PBM measures, divided into 6 bundle blocks acting as a working template to develop institutions' individual PBM practices for hospitals beginning a program or trying to improve an already existing program. A stepwise selection of the most feasible measures will facilitate the implementation of PBM. In this manner, PBM represents a new quality and safety standard

    Self-diffusion in granular gases

    Full text link
    The coefficient of self-diffusion for a homogeneously cooling granular gas changes significantly if the impact-velocity dependence of the restitution coefficient Ï”\epsilon is taken into account. For the case of a constant Ï”\epsilon the particles spread logarithmically slow with time, whereas the velocity dependent coefficient yields a power law time-dependence. The impact of the difference in these time dependences on the properties of a freely cooling granular gas is discussed.Comment: 6 pages, no figure
    • 

    corecore