1,544 research outputs found

    Chains of Viscoelastic Spheres

    Full text link
    Given a chain of viscoelastic spheres with fixed masses of the first and last particles. We raise the question: How to chose the masses of the other particles of the chain to assure maximal energy transfer? The results are compared with a chain of particles for which a constant coefficient of restitution is assumed. Our simple example shows that the assumption of viscoelastic particle properties has not only important consequences for very large systems (see [1]) but leads also to qualitative changes in small systems as compared with particles interacting via a constant restitution coefficient.Comment: 11 pages, 6 figure

    Synchnonization, zero-resistance states and rotating Wigner crystal

    Full text link
    We show that rotational angles of electrons moving in two dimensions (2D) in a perpendicular magnetic field can be synchronized by an external microwave field which frequency is close to the Larmor frequency. The synchronization eliminates collisions between electrons and thus creates a regime with zero diffusion corresponding to the zero-resistance states observed in experiments with high mobility 2D electron gas (2DEG). For long range Coulomb interactions electrons form a rotating hexagonal Wigner crystal. Possible relevance of this effect for planetary rings is discussed.Comment: 4 pages, 4 fig

    Production of Radiobromide: new Nickel Selenide target and optimized separation by dry distillation

    Get PDF
    Introduction Radioisotopes of bromine are of special interest for nuclear medical applications. The positron emitting isotopes 75Br (T½ = 1.6 h; β+ = 75.5 %) and 76Br (T½ = 16.2 h; β+ = 57 %) have suitable decay properties for molecular imaging with PET, while the Auger electron emitters 77Br (T½ = 57.0 h) and 80mBr (T½ = 4.4 h) as well as the β−-emitter 82Br (T½ = 35.3 h) are useful for internal radiotherapy. 77Br is additionally suited for SPECT. The isotopes 75Br, 76Br and 77Br are usually produced at a cyclotron either by 3He and α-particle induced reactions on natural arsenic or by proton and deuteron induced reactions on enriched selenium isotopes [1]. As target mate-rials for the latter two reactions, earlier ele-mental selenium [2] and selenides of Cu, Ag, Mn, Mo, Cr, Ti, Pb and Sn were investigated [cf. 3–7]. Besides several wet chemical separation techniques the dry distillation of bromine from the irradiated targets was investigated, too [cf. 2, 4, 5]. However, the method needs further development. Nickel selenide was investigated as a promising target to withstand high beam currents, and the dry distillation technique for the isolation of n.c.a. radiobromine from the target was optimized. Material and Methods Crystalline Nickel-(II) selenide (0.3–0.5 g) was melted into a 0.5 mm deep cavity of a 1 mm thick Ni plate covered with a Ni grid. NiSe has a melting point of 959 °C. For development of targeting and the chemical separation, natural target material was used. Irradiations of NiSe were usually performed with protons of 17 MeV using a slanting water cooled target holder at the cyclotron BC1710 [8]. For radiochemical studies a beam current of 3 µA and a beam time of about 1 h were appropriate. To separate the produced no-carrier-added (n.c.a.) radiobromine from the target material a dry distillation method was chosen. The apparatus was developed on the basis of a dry distillation method for iodine [cf. 9,10] and optimized to obtain the bromine as n.c.a. [*Br]bromide in a small volume of sodium hydroxide solution. Changing different components of the apparatus, the dead volume could be minimized and an almost constant argon flow as carrier medium was realized. Various capillaries of platinum, stainless steel and quartz glass with different diameters and lengths were tested to trap the radiobromine. Results and Conclusion Nickel selenide proved successful as target material for the production of radiobromine by proton irradiation with 17 MeV protons. The target was tested so far only at beam currents up to 10 µA, but further investigations are ongoing. The optimized dry distillation procedure allows trapping of 80–90 % of the produced radiobromine in a capillary. For this purpose quartz glass capillaries proved to be most suitable. After rinsing the capillary with 0.1 M NaOH solution the activity can be nearly completely obtained in less than 100 µL solution as [*Br]bromide immediately useable for radiosynthesis. So, the overall separation yield was estimated to 81 ± 5 %. The radionuclidic composition and activity of the separated radiobromide was measured by γ-ray spectrometry. Due to the use of natural selenium the determination of the isotopic purity was not meaningful, but it could be shown that the radiobromine was free from other radioisotopes co-produced in the target material and the backing. The radiochemical purity as well as the specific activity were determined by radio ionchromatography. Further experiments using NiSe produced from nickel and enriched selenium are to be per-formed. The isotopic purity of the produced respective radiobromide, the production yield at high beam currents and the reusability of the target material have to be studied

    A model of ballistic aggregation and fragmentation

    Full text link
    A simple model of ballistic aggregation and fragmentation is proposed. The model is characterized by two energy thresholds, Eagg and Efrag, which demarcate different types of impacts: If the kinetic energy of the relative motion of a colliding pair is smaller than Eagg or larger than Efrag, particles respectively merge or break; otherwise they rebound. We assume that particles are formed from monomers which cannot split any further and that in a collision-induced fragmentation the larger particle splits into two fragments. We start from the Boltzmann equation for the mass-velocity distribution function and derive Smoluchowski-like equations for concentrations of particles of different mass. We analyze these equations analytically, solve them numerically and perform Monte Carlo simulations. When aggregation and fragmentation energy thresholds do not depend on the masses of the colliding particles, the model becomes analytically tractable. In this case we show the emergence of the two types of behavior: the regime of unlimited cluster growth arises when fragmentation is (relatively) weak and the relaxation towards a steady state occurs when fragmentation prevails. In a model with mass-dependent Eagg and Efrag the evolution with a cross-over from one of the regimes to another has been detected

    Prevention and management of acute reactions to intravenous iron in surgical patients

    Get PDF
    Absolute or functional iron deficiency is the most prevalent cause of anaemia in surgical patients, and its correction is a fundamental strategy within "Patient Blood Management" programmes. Offering perioperative oral iron for treating iron deficiency anaemia is still recommended, but intravenous iron has been demonstrated to be superior in most cases. However, the long-standing prejudice against intravenous iron administration, which is thought to induce anaphylaxis, hypotension and shock, still persists. With currently available intravenous iron formulations, minor infusion reactions are not common. These self-limited reactions are due to labile iron and not hypersensitivity. Aggressively treating infusion reactions with H 1 -antihistamines or vasopressors should be avoided. Self-limited hypotension during intravenous iron infusion could be considered to be due to hypersensitivity or vascular reaction to labile iron. Acute hypersensitivity reactions to current intravenous iron formulation are believed to be caused by complement activation-related pseudo-allergy. However, though exceedingly rare (<1:250,000 administrations), they should not be ignored, and intravenous iron should be administered only at facilities where staff is trained to evaluate and manage these reactions. As preventive measures, prior to the infusion, staff should inform all patients about infusion reactions and identify those patients with increased risk of hypersensitivity or contraindications for intravenous iron. Infusion should be started at a low rate for a few minutes. In the event of a reaction, the very first intervention should be the immediate cessation of the infusion, followed by evaluation of severity and treatment. An algorithm to scale the intensity of treatment to the clinical picture and/or response to therapy is presented

    Amyloid-beta Leads to Impaired Cellular Respiration, Energy Production and Mitochondrial Electron Chain Complex Activities in Human Neuroblastoma Cells

    Get PDF
    Evidence suggests that amyloid-beta (Aβ) protein is a key factor in the pathogenesis of Alzheimer's disease (AD) and it has been recently proposed that mitochondria are involved in the biochemical pathway by which Aβ can lead to neuronal dysfunction. Here we investigated the specific effects of Aβ on mitochondrial function under physiological conditions. Mitochondrial respiratory functions and energy metabolism were analyzed in control and in human wild-type amyloid precursor protein (APP) stably transfected human neuroblastoma cells (SH-SY5Y). Mitochondrial respiratory capacity of mitochondrial electron transport chain (ETC) in vital cells was measured with a high-resolution respirometry system (Oxygraph-2k). In addition, we determined the individual activities of mitochondrial complexes I-IV that compose ETC and ATP cellular levels. While the activities of complexes I and II did not change between cell types, complex IV activity was significantly reduced in APP cells. In contrast, activity of complex III was significantly enhanced in APP cells, as compensatory response in order to balance the defect of complex IV. However, this compensatory mechanism could not prevent the strong impairment of total respiration in vital APP cells. As a result, the respiratory control ratio (state3/state4) together with ATP production decreased in the APP cells in comparison with the control cells. Chronic exposure to soluble Aβ protein may result in an impairment of energy homeostasis due to a decreased respiratory capacity of mitochondrial electron transport chain which, in turn, may accelerate neurons demis
    • …
    corecore