17 research outputs found

    Divergent architecture of the heterotrimeric NatC complex explains N-terminal acetylation of cognate substrates

    Get PDF
    The heterotrimeric NatC complex, comprising the catalytic Naa30 and the two auxiliary subunits Naa35 and Naa38, co-translationally acetylates the N-termini of numerous eukaryotic target proteins. Despite its unique subunit composition, its essential role for many aspects of cellular function and its suggested involvement in disease, structure and mechanism of NatC have remained unknown. Here, we present the crystal structure of the Saccharomyces cerevisiae NatC complex, which exhibits a strikingly different architecture compared to previously described N-terminal acetyltransferase (NAT) complexes. Cofactor and ligand-bound structures reveal how the first four amino acids of cognate substrates are recognized at the Naa30–Naa35 interface. A sequence-specific, ligand-induced conformational change in Naa30 enables efficient acetylation. Based on detailed structure–function studies, we suggest a catalytic mechanism and identify a ribosome-binding patch in an elongated tip region of NatC. Our study reveals how NAT machineries have divergently evolved to N-terminally acetylate specific subsets of target proteins

    Cryo-EM captures early ribosome assembly in action

    Get PDF
    Ribosome biogenesis is a fundamental multi-step cellular process in all domains of life that involves the production, processing, folding, and modification of ribosomal RNAs (rRNAs) and ribosomal proteins. To obtain insights into the still unexplored early assembly phase of the bacterial 50S subunit, we exploited a minimal in vitro reconstitution system using purified ribosomal components and scalable reaction conditions. Time-limited assembly assays combined with cryo-EM analysis visualizes the structurally complex assembly pathway starting with a particle consisting of ordered density for only ~500 nucleotides of 23S rRNA domain I and three ribosomal proteins. In addition, our structural analysis reveals that early 50S assembly occurs in a domain-wise fashion, while late 50S assembly proceeds incrementally. Furthermore, we find that both ribosomal proteins and folded rRNA helices, occupying surface exposed regions on pre-50S particles, induce, or stabilize rRNA folds within adjacent regions, thereby creating cooperativity

    Cryo-electron tomography reveals structural insights into the membrane remodeling mode of dynamin-like EHD filaments

    Get PDF
    Eps15-homology domain containing proteins (EHDs) are eukaryotic, dynamin-related ATPases involved in cellular membrane trafficking. They oligomerize on membranes into filaments that induce membrane tubulation. While EHD crystal structures in open and closed conformations were previously reported, little structural information is available for the membrane-bound oligomeric form. Consequently, mechanistic insights into the membrane remodeling mechanism have remained sparse. Here, by using cryo-electron tomography and subtomogram averaging, we determined structures of nucleotide-bound EHD4 filaments on membrane tubes of various diameters at an average resolution of 7.6 Å. Assembly of EHD4 is mediated via interfaces in the G-domain and the helical domain. The oligomerized EHD4 structure resembles the closed conformation, where the tips of the helical domains protrude into the membrane. The variation in filament geometry and tube radius suggests a spontaneous filament curvature of approximately 1/70 nm(−1). Combining the available structural and functional data, we suggest a model for EHD-mediated membrane remodeling

    The architecture of protein synthesis in the developing neocortex at near-atomic resolution reveals Ebp1-mediated neuronal proteostasis at the 60S tunnel exit

    Get PDF
    Protein synthesis must be finely tuned in the nervous system, as it represents an essential feature of neurodevelopmental gene expression, and dominant pathology in neurological disease. However, the architecture of ribosomal complexes in the developing mammalian brain has not been analyzed at high resolution. This study investigates the architecture of ribosomes ex vivo from the embryonic and perinatal mouse neocortex, revealing Ebp1 as a 60S peptide tunnel exit binding factor at near-atomic resolution by multiparticle cryo-electron microscopy. The impact of Ebp1 on the neuronal proteome was analyzed by pSILAC and BONCAT coupled mass spectrometry, implicating Ebp1 in neurite outgrowth proteostasis, with in vivo embryonic Ebp1 knockdown resulting in dysregulation of neurite outgrowth. Our findings reveal Ebp1 as a central component of neocortical protein synthesis, and the 60S peptide tunnel exit as a focal point of gene expression control in the molecular specification of neuronal morphology

    Timed global reorganization of protein synthesis during neocortex neurogenesis at codon resolution

    Get PDF
    Translation modulates the timing and amplification of gene expression after transcription. Development of the brain’s neocortex requires precisely timed and spatially targeted gene expression, but the relationship between mRNA vs. protein synthesis throughout the genome is unknown. We perform a comprehensive analysis of the reactants, synthesis, and products of mRNA translation spanning mouse neocortex neurogenesis. Ribosome number in the cortical plate decreases sharply at mid-neurogenesis during a transition in neuronal subtype specification, shifting the fundamental kinetics of protein synthesis, with mRNA and protein levels frequently divergent. Satb2, which drives an essential neuronal subtype-specific program, is a highly dynamically translated mRNA with surprisingly broad transcription across diverse neuronal lineages. Satb2 protein achieves its neuronal subtype expression through timed regulation by the RNA-binding protein Pumilio2. Thus, the refinement of transcriptional programs by protein synthesis is a widespread feature of neuronal specification. Developmental neocortex translatome data are provided in an open-source resource: https://shiny.mdc-berlin.de/cortexomics/

    A critical period of translational control during brain development at codon resolution

    Get PDF
    Translation modulates the timing and amplification of gene expression after transcription. Brain development requires uniquely complex gene expression patterns, but large-scale measurements of translation directly in the prenatal brain are lacking. We measure the reactants, synthesis and products of mRNA translation spanning mouse neocortex neurogenesis, and discover a transient window of dynamic regulation at mid-gestation. Timed translation upregulation of chromatin-binding proteins like Satb2, which is essential for neuronal subtype differentiation, restricts protein expression in neuronal lineages despite broad transcriptional priming in progenitors. In contrast, translation downregulation of ribosomal proteins sharply decreases ribosome biogenesis, coinciding with a major shift in protein synthesis dynamics at mid-gestation. Changing activity of eIF4EBP1, a direct inhibitor of ribosome biogenesis, is concurrent with ribosome downregulation and affects neurogenesis of the Satb2 lineage. Thus, the molecular logic of brain development includes the refinement of transcriptional programs by translation. Modeling of the developmental neocortex translatome is provided as an open-source searchable resource at https://shiny.mdc-berlin.de/cortexomics

    Building functional modules from molecular interactions

    No full text
    The main reaction pathways in the living cell are carried out by functional modules - namely, macromolecular machines with compact structure or ensembles that change their composition and/or organization during function. Modules define themselves by spatial sequestration, chemical specificity and a characteristic time domain within which their function proceeds. On receiving a specific input, modules go through functional cycles, with phases of increasing and decreasing complexity of molecular interactions. Here, we discuss how such modules are formed and the experimental and theoretical approaches that can be used to investigate them, using examples from polynucleotide-protein interactions, vesicle transport and signal transduction to illustrate the underlying principles. Further progress in this field, where systems biology and biochemistry meet, will depend on iterative validation of the experimental and theoretical approaches

    Structural Basis for the Action of an All Purpose Transcription Anti termination Factor

    Get PDF
    Bacteriophage λN protein, a model anti-termination factor, binds nascent RNA and host Nus factors, rendering RNA polymerase resistant to all pause and termination signals. A 3.7-Å-resolution cryo-electron microscopy structure and structure-informed functional analyses reveal a multi-pronged strategy by which the intrinsically unstructured λN directly modifies RNA polymerase interactions with the nucleic acids and subverts essential functions of NusA, NusE, and NusG to reprogram the transcriptional apparatus. λN repositions NusA and remodels the β subunit flap tip, which likely precludes folding of pause or termination RNA hairpins in the exit tunnel and disrupts termination-supporting interactions of the α subunit C-terminal domains. λN invades and traverses the RNA polymerase hybrid cavity, likely stabilizing the hybrid and impeding pause- or termination-related conformational changes of polymerase. λN also lines upstream DNA, seemingly reinforcing anti-backtracking and anti-swiveling by NusG. Moreover, λN-repositioned NusA and NusE sequester the NusG C-terminal domain, counteracting ρ-dependent termination. Other anti-terminators likely utilize similar mechanisms to enable processive transcription

    Divergent architecture of the heterotrimeric NatC complex explains N terminal acetylation of cognate substrates

    No full text
    The heterotrimeric NatC complex, comprising the catalytic Naa30 and the two auxiliary subunits Naa35 and Naa38, co translationally acetylates the N termini of numerous eukaryotic target proteins. Despite its unique subunit composition, its essential role for many aspects of cellular function and its suggested involvement in disease, structure and mechanism of NatC have remained unknown. Here, we present the crystal structure of the Saccharomyces cerevisiae NatC complex, which exhibits a strikingly different architecture compared to previously described N terminal acetyltransferase NAT complexes. Cofactor and ligand bound structures reveal how the first four amino acids of cognate substrates are recognized at the Naa30 Naa35 interface. A sequence specific, ligand induced conformational change in Naa30 enables efficient acetylation. Based on detailed structure function studies, we suggest a catalytic mechanism and identify a ribosome binding patch in an elongated tip region of NatC. Our study reveals how NAT machineries have divergently evolved to N terminally acetylate specific subsets of target protein
    corecore