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SUMMARY

Bacteriophage lN protein, a model anti-termination
factor, binds nascent RNA and host Nus factors,
rendering RNA polymerase resistant to all pause
and termination signals. A 3.7-Å-resolution cryo-
electron microscopy structure and structure-
informed functional analyses reveal a multi-pronged
strategy by which the intrinsically unstructured lN
directly modifies RNA polymerase interactions with
the nucleic acids and subverts essential functions
of NusA, NusE, and NusG to reprogram the transcrip-
tional apparatus. lN repositions NusA and remodels
the b subunit flap tip, which likely precludes folding
of pause or termination RNA hairpins in the exit tun-
nel and disrupts termination-supporting interactions
of the a subunit C-terminal domains. lN invades and
traverses the RNA polymerase hybrid cavity, likely
stabilizing the hybrid and impeding pause- or
termination-related conformational changes of poly-
merase. lN also lines upstream DNA, seemingly
reinforcing anti-backtracking and anti-swiveling by
NusG. Moreover, lN-repositioned NusA and NusE
sequester the NusG C-terminal domain, counteract-
ing r-dependent termination. Other anti-terminators
likely utilize similar mechanisms to enable proces-
sive transcription.

INTRODUCTION

Bacteria transcribe their genomes with the help of a multi-sub-

unit RNA polymerase (RNAP), which comprises two large b

and b0 subunits that form the active site, two regulatory a sub-

units, and an u subunit that supports RNAP assembly (Darst,

2001). This core enzyme cooperates with transcription factors

and responds to signals on the DNA template and the nascent

RNA to achieve full functionality in vivo. For example, elongating

RNAP frequently enters an elemental paused state that can be

stabilized by an RNA hairpin invading the RNA exit tunnel or by
RNAP backtracking (Zhang and Landick, 2016). RNA synthesis

is terminated intrinsically when the transcription elongation com-

plex (TEC) transcribes a stable RNA hairpin followed by a uridine-

rich stretch or with the aid of transcription termination factor r

(Ray-Soni et al., 2016). Pausing and termination can be modu-

lated by elongation factors, such as N-utilization substances

(Nus) A and G (Zhang and Landick, 2016).

The interplay of pausing, termination, and continued transcrip-

tion (anti-termination) is a pervasive, gene-regulatory principle in

bacteria, for example during transcription attenuation (Gollnick

and Babitzke, 2002) or transcriptional riboswitching (Sherwood

and Henkin, 2016), where the outcome is decided during tran-

scription of a short regulatory region. Alternatively, some regula-

tors can stably insulate RNAP from the destabilizing effects of

terminators over long distances. These processes are referred

to as processive anti-termination (Weisberg and Gottesman,

1999) and can be elicited by RNA elements, such as the polymer-

ase utilization (put) signal of phage HK022 (King et al., 1996) in

Escherichia coli. Most lambdoid phages exploit an alternative

mechanism of processive anti-termination during their lytic life

cycles; this depends on a phage-encoded transcription factor,

N, and an N-utilization (nut) site on the nascent phage RNA,

composed of a linear sequence, boxA, and a hairpin element,

boxB. N is produced as an immediate early gene product, binds

nut boxB, and recruits four host transcription factors, NusA,

NusB, NusE (equivalent to ribosomal protein S10), and NusG.

These factors assemble a ribonucleoprotein complex (RNP)

that accompanies RNAP during further transcription (Nudler

and Gottesman, 2002). N/Nus-factor/nut RNA-modified RNAP

resists pause and termination signals several kilobase pairs

downstream of the modification site (Mason et al., 1992).

N-based processive anti-termination has been investigated

since the 1960s and has served as a paradigm for transcription

regulation. N of phage l (lN) was one of the first factors discov-

ered that exhibited anti-termination activity and that controlled

RNAP during transcription elongation instead of initiation (Rob-

erts, 1969). It also provided an example for RNAP control via a

regulatory element on the RNA instead of on the DNA and

illustrated spatial separation of the sites of effector recruitment

and action as well as effector-based enlistment of host tran-

scription factors. We recently worked out the global architecture

of a lN-based transcription anti-termination complex (lN-TAC)
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(Said et al., 2017), but the low resolution of this structure (10 Å)

precluded visualization of the atomic-level details necessary to

understand how lN counteracts diverse modes of pausing and

termination. Here, we describe a 3.7 Å-resolution single-particle

cryo-electron microscopy (cryo-EM) structure of a complete

lN-TAC and structure-guided functional analyses, which portray

a remarkable multi-pronged molecular strategy implemented by

the small, intrinsically unstructured lN protein to re-program the

E. coli transcriptional apparatus.

RESULTS

lN Reinforces the Elongation-Competent Conformation
of RNAP
We subjected a recombinant lN-TAC comprising RNAP, a nu-

cleic acid scaffold with an artificial transcription bubble and a

consensus nut site on the RNA (Figure 1A), all Nus factors, and

lN to single-particle cryo-EM analysis (Figures S1–S3), and we

obtained a structure at a nominal resolution of 3.7 Å (Figure S2A;

Table 1). Small variations compared to our previous assembly

protocol (Said et al., 2017) and recording a larger dataset on a

more modern electron microscope led to the improved resolu-

tion. The local resolution varied between 3.4 Å for the best-

defined regions in the RNAP core to 12 Å surrounding the

lN-Nus factor-nut RNP (the ‘‘modifying RNP’’; Figure S2C).

The latter components could be unequivocally placed into the

cryo-EM map based on the crystal structure of a lN-NusA-

NusB-NusE-nut RNA complex (Said et al., 2017) and the NMR

structure of a NusG C-terminal domain (CTD)-NusE complex

(Burmann et al., 2010). All elements directly contacting RNAP

were clearly defined in the cryo-EM map and could be modeled

de novo (Figure S2D).

In the lN-TAC, themodifying RNP is anchored next to the RNA

exit tunnel of RNAP (Figure 1B; Video S1). RNAP exhibits a

conformation very similar to that of an unmodified TEC (Kang

et al., 2017) (root-mean-square deviation of 1.46 Å for 2910 com-

mon Ca atoms; Figure S4). Although the nucleic acid scaffold

employed could form a pause-inducing 10-base-pair (bp) hybrid

(Figure 1A), the lN-TAC encompasses an elongation-competent

9-bp hybrid that resides in the post-translocated state, with an

unpaired +1 position in the DNA template strand, ready to

receive an incoming nucleoside triphosphate (NTP; Figure 1C).

We monitored run-off transcription by the assembled lN-TAC

used for cryo-EM analysis in comparison to a complex lacking

lN. lN-TAC yielded run-off products at a higher yield and at

an increased rate compared to a TEC lacking lN (Figure 1D),

showing that lN stabilizes the elongation-competent conforma-

tion of RNAP.

The Modifying RNP Is Flexibly Anchored to RNAP
The lower resolution of the cryo-EM map in the region corre-

sponding to the upper modifying RNP suggests that this part

of the complex is flexibly anchored to RNAP. Further classifica-

tion of the particle images led to three sub-structures at nominal

resolutions between 4.2 and 4.8 Å. In these structures, the main

portion of the modifying RNP occupied two positions relative to

RNAP, distributed around the position obtained from the com-

plete map (Figure S3; Video S2). Comparison of these states
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suggests a bi-modal movement of the upper RNP as a rigid

body. A ‘‘shake’’ of �20� and a ‘‘nod’’ of �10� about the base

of the modifying RNP take the nut boxB edge either closer to

or further away from the RNAP RNA exit tunnel.

In all conformational states, four components of the modifying

RNP establish links to RNAP (Figure 1B; Video S1): (1) an about

37 Å-long a helix in the central part of lN (a3) runs along the up-

stream DNA duplex and the RNAP b flap tip (FT); (2) the NusA

N-terminal domain (NTD) binds the other side of the FT; (3) the

nascent RNA runs from the RNA exit tunnel of RNAP to nut

boxB of the modifying RNP; and (4) the NusG NTD binds across

the RNAP active site cleft, while its CTD abuts the NusA and

NusE subunits of the modifying RNP. These bridging molecular

elements are crucial for stabilizing the active conformation of

RNAP and for countering diversemodes of pausing and termina-

tion as further detailed below.

lN Remodels the RNAP b Flap Tip
The NusA NTD is connected by an a helix to an array of one S1

and two hnRNP K homology (KH) RNA-binding domains, which

are followed by two acidic repeat domains (AR1 and AR2) that

are not universally conserved. In the lN-TAC, helix a1 of

NusANTD (residues 2–10), the NTD-S1 linker helix (residues

122–132), and the central helix a3 of lN (residues 58–82) form

a tripod that engages the RNAP b FT (residues 887–915) like a

push button (Figure 2A). The NusA/lN-FT interaction buries

�1,800 A2 of combined surface area and is stabilized by hydro-

phobic interactions surrounded by hydrophilic contacts. These

interactions stabilize a specific conformation of the FT, as the

FT is disordered in an unmodified TEC (Kang et al., 2017).

In the absence of lN, interactions of the FT (Kang et al., 2018a;

Toulokhonov and Landick, 2003) and the b0 Zinc-binding domain

(ZBD; residues 35–107) (Epshtein et al., 2007; Gusarov and

Nudler, 2001) with RNA hairpins increase pause lifetime and

modulate intrinsic termination. Compared to recent cryo-EM

structures of his operon hairpin-paused elongation complexes

lacking (hisPEC) or containing (NusA-hisPEC) NusA (Guo et al.,

2018; Kang et al., 2018a), the present structure reveals that lN

helix a3 remodels the conformation of the FT and its contacts

to the ZBD and NusA NTD (Figure 2B). The remodeled FT oc-

cupies a surface on the ZBD that accommodates the 30 branch
of the hairpin in hisPECs, redirects RNA-binding residues R47

and K50 of the ZBD to the upstream DNA duplex and other parts

of the ZBD, respectively, and hinders the tip of the hairpin from

approaching the NusA NTD (Figure 2C). Moreover, E892 of the

FT contacts ZBD K66 (Figure 2C, bottom), which interacts with

the 30 branch of pause hairpins in hisPECs. Thus, lN-induced

FT remodeling prevents RNA hairpin accommodation between

the FT and ZBD, hinders the hairpin tips from approaching the

NusA NTD-S1 region, and sequesters residues of the ZBD

important for pausing and intrinsic termination.

lN-Mediated Remodeling Alters aCTD-NusA
Interactions
Hairpin-stabilized pausing (Ha et al., 2010; Kolb et al., 2014) and

intrinsic termination (Gusarov and Nudler, 2001) are further stim-

ulated by NusA, presumably because the NTD and S1 domain

can cradle the upper portions of RNA hairpins close to the rim



Figure 1. Structural Overview and Activity of the Assembled lN-TAC

(A) Nucleic acid scaffold employed in the structural analysis.

(B) lN-TAC with nucleic acids and the modifying RNP shown in cartoon mode and RNAP in surface representation. Color-coding of subunits is maintained in the

following figures. tDNA, template DNA strand; ntDNA, non-template DNA strand.

(C) Cryo-EM map around the downstream DNA and the hybrid. The lN-TAC resides in the post-translocated state and the unpaired +1 position of the template

strand is indicated. Rotation symbols in this and the following figures indicate the view relative to Figure 1B, left.

(D) Run-off transcription by the in vitro assembled lN-TAC used for cryo-EManalysis, a TEC lacking lN, and a lN-TACbearing a truncated version of lN (residues

1–84). +1, addition of the first nucleotide;RO, run-off product. Data were fit to a first-order reaction (fractionRO =A[1�exp(�ke t)];A, amplitude of the reaction; ke,

apparent first-order rate constant of elongation; t, time). Quantified data (right) represent means ± SD of three independent experiments. See also Figures S1–S4

and Videos S1 and S2.
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Table 1. Cryo-EM Data Collection and Refinement

Data Collection

Pixel Size (Å/px) 0.675

Defocus range (mm) 0.75–3.3

Voltage (kV) 300

Electron dose e�/A2 69

Number of frames 40

Micrographs total/used 4,074/3,550

Particle images total/used 802,858/708,030

Refinement

Resolution FCS0.143 (Å) 3.7

Map sharpening B-factor (A2) �97

CC mask 0.791

CC volume 0.787

Model composition

Non-hydrogen atoms

Protein residues

DNA residues

RNA residues

Zn2+/Mg2+ ions

34797

4274

52

47

2/1

Rmsd from ideal geometry

Bond lengths (Å)

Bond angles (�)

0.007

0.919

Ramachandran plot

Favored (%)

Allowed (%)

Outliers (%)

92.2

7.73

0.07

Model qualitya: Clash score 5.73

Model qualitya: Rotamer outliers 0.25

Model qualitya: Overall score 1.79
aAssessed using MolProbity (Chen et al., 2015)
of the RNA exit tunnel (Guo et al., 2018). lN helix a3 and the

following region further connect to the base of the b flap (resi-

dues 830–1058) and b protrusion (residues 450–507; Figure 2A),

leading to global repositioning of NusA compared to a NusA-

hisPEC (Guo et al., 2018) (�45� rotation about the beginning of

the NusA NTD-S1 linker helix; Figure 2D). N-terminal portions

of lN, nut site RNA, the NusB-NusE dimer, and the NusG CTD

encircle distal parts of NusA and pull them into the direction of

the upstream DNA duplex (Figure 2D).

As lN appears to serve as the key connector between the el-

ements surrounding NusA, we tested the relevance of this global

remodeling by surveying the consequences of systematic lN

truncations in an in vitro anti-termination assay. Deleting the first

37 residues of lN (lN38–107), which together with nut boxB bind

the NusA KH domains, reduced anti-termination by about 25%

(Figure 2E, lanes 4 and 5), and anti-termination was entirely

lost upon deletion of the first 57 residues (lN58–107), including

lN-NusE contacts (Figure 2E, lanes 4 and 6). About 60% of the

anti-termination activity remained upon deletion of the C-termi-

nal 22 residues of lN (lN1–84; Figure 2E, lanes 4 and 8), but

anti-termination was again essentially lost when helix a3 was

additionally deleted (lN1–62; Figure 2E, lanes 4 and 9). These re-

sults support the essential role of lN helix a3 in NusA reposition-
146 Molecular Cell 74, 143–157, April 4, 2019
ing and underscore the importance of neighboring lN regions

that anchor it to other components in the modifying RNP (N-ter-

minal of helix a3) and to RNAP (C-terminal of helix a3).

In a NusA-hisPEC, NusANTD andAR2 contact the CTDs of the

RNAP a subunits, and the NusA KH domains rest on the tip of the

u subunit (Guo et al., 2018; Figure 2D). aCTDs and NusA AR2

lack density in the lN-TAC cryo-EM map, suggesting that

aCTD-NusA interactions are broken during lN-mediated reposi-

tioning of NusA (Figure 2D). Consistent with this notion and pre-

vious data (Liu et al., 1996; Mah et al., 1999), removal of both

aCTDs or NusA AR2 did not affect lN-based anti-termination

(Figure 2F, lanes 3–5). While removal of NusA AR2 also did not

strongly affect intrinsic termination by Nus factor-modified

RNAP in the absence of lN (Figure 2F, lanes 6, 8, 9, and 11),

NusA-enhanced intrinsic termination was strongly reduced

upon removal of aCTDs in the absence of lN (Figure 2F, lanes

7 and 10), at least in part due to inefficient binding of NusA to

TECs lacking aCTDs (Figure 2G). Therefore, lN replaces NusA-

aCTD contacts that normally support NusA recruitment and

intrinsic termination.

Guidance of Nascent RNA Might Oppose Hairpin
Formation
The cryo-EM map for the RNA region connecting the RNA at the

hybrid to nut boxB is fragmented. Density that appears at lower

contour levels suggests that the exiting RNA runs across a posi-

tively charged surface of the FT and ZBD and along the NusA S1

domain (Figure 3A,B). Guided along this path, the upper branch

of a nascent RNA hairpin would be prevented from pairing with

the lowerbranch in theRNAexit tunnel, such thathairpin formation

would be avoided or delayed until the entire hairpin has exited

RNAP. Several positively charged residues surrounding the

concave surface of the NusA S1 domain could provide suitable

guidance for the RNA (Figure 3A). Indeed, deletion of the NusA

S1 domain and all following regions (NusA1–137) reduced anti-

termination by about 50% (Figure 3C, lanes 4 and 5). Double

alanine mutations of K143 and K144, which point away from the

proposed RNA path (Figure 3A), had no effect on anti-termination

(Figure 3C, lanes 4 and 6), while alanine mutations of R147 or

R164, lining the proposedRNApath (Figured 3A and 3B), reduced

anti-termination by 35% and 25%, respectively (Figure 3C, lanes

4, 7, and 8). Although the double RR147/164AA mutation did not

further increase theeffect (Figure3C, lanes4and9), thesefindings

are consistent with the idea that lN-induced reorganization of

RNAP RNA-binding elements and NusA provides for guidance

of the exiting RNA that counteracts or delays hairpin folding.

Our mutational analyses might also support an additional

function of NusA S1 residue R147. In the lN-TAC, NusA R147

reaches down to a loop (residues 85–88) of the ZBD (Fig-

ure 3A,B). Deletion of ZBD residues 70–88 significantly reduces

intrinsic termination (King et al., 2004). Thus, lN-induced posi-

tioning of NusA S1 on top of the ZBD might lead to NusA R147

shielding ZBD regions important for intrinsic termination.

lN Lines Upstream DNA and the Hybrid and Stabilizes
the Active State of RNAP
Opposite the FT, several positively charged residues (K65, R73,

R76, R80, and K85) of lN helix a3 and the following loop face the



(legend on next page)
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upstream DNA duplex (Figure 4A). The positively charged side

chains shield negative charges of the DNA backbone, likely

strengthening the duplex by reducing electrostatic repulsion be-

tween the DNA strands. The lower part of lN helix a3 (R76) and

the following loop (K85) approach the template and non-tem-

plate strands a full turn and half a turn, respectively, upstream

of their site of re-engagement (Figure 4A). Thus, lN helix a3

might reinforce base pairing upstream of the transcription bub-

ble, which would counteract RNAP backtracking.

Strikingly, following helix a3, lN meanders along the b flap

(residues 1039–1048) and the b protrusion, enters the RNAP

hybrid cavity, and traverses the hybrid to the RNA exit tunnel

(Figure 4B). lN snakes through existing crevices in the TEC

(Kang et al., 2017) and does not induce major distortions in

RNAP or the hybrid, except for a slight upward movement of

the b flap and b0 clamp elements covering the hybrid. Entry

into paused states is accompanied by swiveling of a b0 module

(clamp, dock, shelf, SI3, and CTR) (Kang et al., 2018a). Interest-

ingly, on its way through the catalytic cavity, lN links some of

these mobile elements to other parts of RNAP, likely counteract-

ing pause-associated conformational changes.

The end of lN helix a3 is fixed to the base of the b flap by lN

W82/Y83 stacking on a loop of the b flap (residues 1039–1048),

and by lNY83 andS84 hydrogen bondingwith themain and side

chains of b D842 and R936, respectively (Figure 4C). The

following lN residues 84–94 further encircle the loop of the b

flap, on which lNW82/Y83 stacks, with lN residues 88–92 con-

tacting the b protrusion (Figure 4C). Beyond residue 92, lN runs

between the backside of the b flap and the hybrid (Figure 4D).

Positively charged side chains extend toward the hybrid (K98,

K100) and the exiting RNA (K102; Figure 4D). This configuration

suggests that lN counteracts hybrid melting, and thus termina-

tion, by decreasing the inner diameter of the hybrid cavity and by

reducing charge repulsion between the paired DNA and RNA. lN
Figure 2. Remodeling of the FT and Repositioning of NusA

(A) Interaction of two N-terminal helices of NusA (blue) and of the central a3 helix

(B) Comparison of the NusA-lN-FT interaction in the lN-TAC (top) and the NusA-F

the NusA NTD-S1 linker helix.

(C) Two views on a pause hairpin in the RNA exit tunnel modeled on the lN-TA

subunits. The remodeled FT interferes with positioning of the 30 branch (gold) of t

redirects RNA-binding residues of the ZBD to upstream DNA or other regions o

following figures: carbon, as the respective protein subunit; nitrogen, blue; oxygen

bridges, or contacts.

(D) Global repositioning of NusA (blue) by lNand other portions of themodifying RN

hisPEC (PDB ID 6FLQ; cyan) modeled on the lN-TAC by global superposition of

RNAP and nucleic acids, light gray surface. Black line, distance between equival

pause hairpin in the NusA-hisPEC.

(E) Left: ribbon plot of lN highlighting truncation positions and interacting eleme

ficiency 3-min time points. Transcription complexes are indicated at the bottom,

terminated at ltR’. Samples were analyzed on several identical gels, and duplic

following figures was calculated by setting anti-termination efficiency of RNAP

complexes accordingly. Quantified data represent means ± SD of three independ

this and the following figures: *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, not sign

(F) Effect of deletion of aCTDs or NusA AR2 on RNAP (lanes 1 and 2), lN-TAC (la

analyzed in the same fashion as in (E). Transcription complexes and factor variat

(G) Coomassie-stained SDS-PAGE (proteins; top) and ethidium bromide-stained

runs showing lack of efficient incorporation of NusA or NusADAR2 into a TEC lac

NusADAR2 in the presence of lN (second and fourth sections). Presence of lN is i

indicated above the gels. Bands are identified on the right. Expected positions of N

lN, there is also inefficient incorporation of the NusB-NusE dimer.
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residues 99–105 lie underneath the b0 lid (residues 250–264) and

interconnect the b flap and the C-terminal clamp region of b

(CT clamp; residues 1,233–1,342; Figure 4B).

The C-terminal ten residues of lN rest between the CT clamp

and the b0 dock (residues 369–420), lining the exit tunnel oppo-

site the ZBD (Figure 4E). Superposition of hisPECs (Guo et al.,

2018; Kang et al., 2018a) and the lN-TAC based on the RNAP

cores revealed that the 30 branch of a hairpin could, in principle,

still be accommodated next to the lN-remodeled FT, albeit dis-

placed from the ZBD and NusA NTD (Figure 4E). However, the 50

branch of a hairpin would then clash with the C terminus of lN

(Figure 4E). Apart from constricting the diameter of the RNA

exit tunnel, cross-strutting of the b CT clamp and b0 dock by

the lN C terminus likely counteracts widening of the exit tunnel

associated with RNAP swiveling (Kang et al., 2018a).

To directly test the importance of the above lN contacts, we

monitored the effects of specific lN residue substitutions on

intrinsic termination. Alanine mutations of R76/R80/K85 (lining

the upstream DNA), W82/Y83 (fixing helix a3 at the base of the

b flap), R89 or R89/R96 (contacting the b protrusion), R96/K98

(contacting the b protrusion [R96] and pointing to the hybrid

[K98]), or K98/K100/K102 (pointing to the hybrid [K98, K100]

and to the exiting RNA [K102]) led to a loss of 15%–50% of

anti-termination activity (Figure 4F, lanes 4–10), with combina-

tions of mutations showing stronger effects than single muta-

tions. Moreover, anti-termination activity of lN-modified RNAP

(in the absence of Nus factors) was decreased stepwise by incre-

mental C-terminal deletions of lN, which sequentially removed

contacts to the CT clamp and dock (lN1–104 and lN1–99; Fig-

ure 4F, lanes 13–14), b flap (lN1–90; Figure 4F, lane 15) and the

b protrusion (lN1–84; Figure 4F, lane 16). Finally, a C-terminal

peptide of lN (lN88–107), containing the elements that run

through the hybrid cavity, significantly increased anti-termina-

tion activity of otherwise unmodified RNAP (Figure 4F, lane 17).
of lN (red) with the RNAP FT (gray surface).

T interaction in a NusA-hisPEC (PDB ID 6FLQ) after superposition according to

C by superposition of a NusA-hisPEC (PDB ID 6FLQ) according to the NusA

he hairpin on the ZBD and with its tip approaching the NusA NTD (top). It also

f the ZBD (bottom). Color coding for residues shown as sticks in this and the

, red. Black dashed lines in this and the following figures, hydrogen bonds, salt

P (gray semitransparent surface), illustrated by the position of NusA in aNusA-

the RNAPs. RNAP aCTDs (black) as seen in the NusA-hisPEC are also shown.

ent points in the NusA KH1 domains. Golden asterisk, position of the tip of the

nts in the lN-TAC. Right: transcription assays monitoring anti-termination ef-

and products are identified on the right: RO, run-off transcript; tR’, transcript

ate lanes were removed for display. Relative anti-termination in this and the

alone to 0% and of lN-TAC to 100% and scaling quantified data for other

ent experiments. Significance is relative to lN-TAC. Significance indicators in

ificant (p R 0.05).

nes 3–5), NusA-modified RNAP (lanes 6–8), and a TEC lacking lN (lanes 9–11)

ions are identified at the bottom.

urea PAGE (nucleic acids; bottom) analyses of size-exclusion chromatography

king lN and aCTDs (first and third sections), but efficient binding of NusA or

ndicated below the gels; mixtures of other components loaded in each run are

usA/NusADAR2 in the complexes are indicated by red boxes. In the absence of



Figure 3. Chaperoning RNA in an Extended Conformation

(A) Path of the transcript from the RNA exit tunnel to the boxB element across

the ZBD and FT and along the NusA S1 domain (NusA AR2 omitted). Golden

dashed lines, regions of the RNA not defined in the cryo-EMmap; sphere, site

of NusA truncation for the experiment shown in (C), lane 5. Side chains of

positively charged residues around the concave surface of the NusA S1

domain, which were mutated for functional tests in (C), are shown as sticks.

Inset, cryo-EM map at the 4s level around the RNA portion between ZBD

and FT.

(B) Electrostatic surface potential of the protein components of the lN-TAC,

illustrating possible guidance of the exiting RNA along positively charged

surface regions. Compared to (A), NusA AR2 is included and partially occludes

RNA regions in the back.

(C) Transcription assays monitoring anti-termination efficiency at 3-min time

points by the transcription complexes indicated at the bottom. Products are

identified on the right: RO, run-off transcript; tR’, transcript terminated at ltR’.

Samples were analyzed on several identical gels, and duplicate lanes were

removed for display. Quantified data represent means ± SD of three inde-

pendent experiments. Significance relative to lN-TAC. Lanes 1–4 are identical

to Figure 2E, lanes 1–4.
Thus, the observed interactions of lN with different parts of

RNAP and nucleic acids in the hybrid cavity seem to contribute

additively to lN-based anti-termination activity.

lN Might Communicate with the RNAP Active Site
Previous analyses had suggested that pause hairpins affect the

RNAP active site via the b connector (residues 814–839 and

1048–1065; Toulokhonov et al., 2001), a two-stranded b sheet

that links the b flap to the active site. Residues 93–98 of lN run

across the upper portion of the connector, and C-terminal lN

residues intervene between the connector and RNA in the exit

tunnel (Figure 4D). Thus, lNmight directly influence RNAP activ-

ity via the connector and undermine signaling from exit tunnel

RNA to the active site. Consistent with this notion, the yield

and rate of run-off transcription of a lN-TAC bearing lN1–84

were strongly reduced compared to an intact lN-TAC and

were similar to those of a TEC lacking lN entirely (Figure 1D).

lN Enhances Anti-pausing and Anti-termination
Activities of NusG
The NusG NTD locks the nucleic acids in the active center cleft

by bridging between the lateral walls (Figure 5A), as also seen

in a recent cryo-EM structure of a NusG-modified TEC (Kang

et al., 2018b). NusG helix a1 (residues 18–33) runs along the b

protrusion, helix a2 (residues 77–84) rests on the b gate loop (res-

idues 359–388), the loop preceding helix a3 (residues 94–101) is

wedged between the b gate loop and N-terminal parts of the b0

clamp (residues 132–190), and an exposed edge of the NTD’s

central b sheet together with helix a3 (residues 105–117) pro-

vides a platform for the tip of the b0 clamp helices (residues

265–307; Figure 5B). As pointed out before (Kang et al.,

2018b), these contacts could explain anti-pausing activity of

NusG by counteracting RNAP swiveling.

In the lN-TAC, NusG residues F15, S16, F18, and R21 (loop

preceding helix a1) contact the template and non-template

strands, guiding them close together directly after separation

of the template strand from the nascent RNA; in addition, a

long loop (residues 53–62) of the NusG NTD that is flexible

in isolation (Mooney et al., 2009) lines the major groove of the
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upstream DNA duplex in the lN-TAC (Figure 5C). These struc-

tural features rationalize how NusG counteracts RNAP back-

tracking (Herbert et al., 2010) and support re-annealing of the

first nucleotide after the transcription bubble (Turtola and Belo-

gurov, 2016).

Backtracking and swiveling may be countered more efficiently

by the NusG paralog RfaH than by NusG due to the more exten-

sive contacts of the NusG-like RfaHNTD to upstreamDNA (Kang

et al., 2018b) (Figure 5D). In the lN-TAC, lN runs along the up-

stream DNA duplex opposite of NusG, holding the DNA close

to NusG (Figure 5C) and thus likely enhancing its anti-backtrack-

ing, re-annealing, and anti-swiveling activities. Moreover, in

contrast to the NusG CTD in the lN-TAC, the RfaH CTD binds

the RNAP b flap tip, which might counteract hairpin-stabilized

pausing (Figure 5D); in the lN-TAC, this role is played by the cen-

tral a3 helix of lN, although the FT is positioned differently in the

lN-TAC than in RfaH-modified RNAP. Thus, lN seems to make

up formultiple anti-pausing and anti-termination deficits of NusG

compared to RfaH.

ANusA-NusGCTD-NusE Interaction Inhibits r-Dependent
Termination
The NusB-NusE dimer binds nut boxA in themodifying RNP (Fig-

ure 1B). A flexible linker connects the NusG NTD to the CTD, al-

lowing the CTD to be positioned between the NusA S1 domain

and NusE via an interaction network involving NusG F144 and

F165; NusA T139, V141, R178, and R180; and NusE M88, D91,

and L92 (Figures 6A and 6B). While the NusGCTD-NusE interac-

tion resembles a previous NMR structure of an isolated

NusGCTD-NusE complex (Burmann et al., 2010), the interaction

with NusA has not been described previously.

The NusG CTD also binds transcription termination factor r,

an RNA-dependent NTPase that can engage transcripts at py-

rimidine-rich r-utilization (rut) sites, translocate on the RNA,

and disassemble the TEC upon encounter of RNAP. The

NusG CTD enhances r engagement of rut sites, but interac-

tions of the NusG CTD with NusE and r are mutually exclusive

(Lawson et al., 2018). Our results suggest that additional inter-

actions of NusGCTD with NusAS1 likely contribute to r exclu-

sion. To test whether the NusAS1-NusGCTD-NusE interaction

counteracts r-dependent termination, we conducted in vitro

r-dependent termination assays. lN-TAC transcribed through
Figure 4. Interactions Involving the Central and C-Terminal Portions o

(A) lN helix a3 running along upstream DNA with positively charged side chains e

for the ntDNA.

(B) lN helix a3 interacting with the base of the flap and the protrusion, and C-term

Nus factors omitted). Spheres, positions of lN K85 and K102 that can be chemic

(C) lN interacting with the flap and protrusion. Interacting residues are shown as

(D) lN running between the connector, exiting RNA and the hybrid (b0 omitted). P

shown as sticks.

(E) The lNC terminus lining the RNA exit tunnel between the CT clamp and dock.

hisPEC (PDB ID 6FLQ) according to the RNAPs, clashes with the C terminus of l

(F) Transcription assaysmonitoring anti-termination efficiency at 3-min time points

on the right: RO, run-off transcript; tR’, transcript terminated at ltR’. In lanes 11

variants but in the absence of Nus factors, using a shorter template with a 73 nt d

and duplicate lanes were removed for display. Due to the wider separation on

removed as well. Quantified data represent means ± SD of three independent ex

(lN C-terminal truncations), or RNAP alone (lN88–107). Lanes 1–4 are identical to
a r-dependent terminator irrespective of the presence of the

NusG CTD (Figure 6C, lanes 7–10). In contrast, no anti-r activ-

ity was seen in the absence of lN (Figure 6C, lanes 1–4), but

under these conditions, r activity was partially suppressed

upon deletion of the NusG CTD (Figure 6C, lanes 5–6). When

not repositioned by lN, NusAS1, and NusE are too far away

from the NusG NTD for the NusG CTD to reach (Figure 6D).

Moreover, NusE will likely not join TECs in the absence of a

boxA element, and the relative orientation of Nus factors on

nut RNA is most likely not maintained in the absence of lN,

such that NusAS1 and NusE would fail to form a binding pocket

for NusGCTD. While positioning of NusAS1 and NusE by lN gen-

erates an efficient sequestration site for NusGCTD, lN elicits

additional anti-r effects, as it suppresses r activity more effi-

ciently than deletion of the NusG CTD (Figure 6C, lanes 6

and 8). Although the binding site of r on RNAP is presently un-

known, we note that RNA contacts of lN-repositioned NusAS1

or the bulk of the modifying RNP could hinder r from approach-

ing its functional binding site on RNAP.

DISCUSSION

The lN-TAC Structure Rationalizes Numerous Previous
Observations
We resolved the structure of the lN-modified anti-termination

complex at high resolution and revealed interactions of lN

with the transcriptional machinery that likely explain how lN

renders RNAP pause- and termination-resistant. Our results

fully rationalize results from more than five decades of research

on this mechanism. For instance, our findings provide explana-

tions for the N-induced alteration of nascent RNA interactions

by the FT, the ZBD, and NusA (Cheeran et al., 2007; Gusarov

and Nudler, 2001); the importance of the flexible arms of the

FT (residues 890–899 and 910–914) (Toulokhonov et al.,

2001; Toulokhonov and Landick, 2003) and of ZBD residues

50–52 (Epshtein et al., 2007) for intrinsic termination; UV-

induced crosslinks of a terminator hairpin to the NusA S1

domain in a lN- and NusA-modified TEC (Gusarov and Nudler,

2001); N-mediated destabilization of pause or terminator hair-

pins (Cheeran et al., 2005); or N-dependent prevention of

RNAP backtracking (Cheeran et al., 2007). The unexpected

path of lN through the hybrid cavity explains results from
f lN

xtending toward the DNA as sticks. Beige dashed line, gap in the cryo-EMmap

inal parts of lN traversing the hybrid cavity to the dock and CT clamp (ZBD and

ally cross-linked to neighboring b and b0 residues (magenta) (Said et al., 2017).

sticks.

ositively charged side chains extending toward the hybrid and exiting RNA are

The 50 branch (orange) of a pause hairpin, modeled by superposition of a NusA-

N. Orange dashed line, presumed path of regions 50 of the hairpin.

by the transcription complexes indicated at the bottom. Products are identified

–17, RNAP alone was compared to RNAP in the presence of the indicated lN

istance between tR’ and RO. Samples were analyzed on several identical gels,

the gels, space between bands representing tR’ and RO in lanes 11–17 was

periments. Significance is relative to lN-TAC (lN point mutations), RNAP-lN

Figure 2E, lanes 1–4.
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Figure 5. Cooperation of lN with NusG

(A) Interactions of the NusG NTD with the protrusion, gate loop, and clamp elements.

(B) NusG F65 and Y68 interacting with residues of the b0 clamp helices. Interacting residues are shown as sticks.

(C) NusG residues F15, S16, F18, and R21 interacting with upstream DNA, supporting formation of the first base pair after the template strand separated from the

transcript. Interacting residues are shown as sticks. A long NTD loop lines the major groove of the upstream duplex.

(D) Comparison to an RfaH-bound TEC (PDB ID 6C6T).
previous cross-linking mass spectrometry (Said et al., 2017)

and hydroxyl-radical footprinting (Cheeran et al., 2007) ana-

lyses. Observed lN contacts to the b flap (residues 1,039–

1,048) and its path along the hybrid rationalize interference of

a b G1045D mutation with N activity (Cheeran et al., 2005)

and N-mediated stabilization of the hybrid (Cheeran et al.,
152 Molecular Cell 74, 143–157, April 4, 2019
2007; Parks et al., 2014), respectively. The increased RNAP

elongation rate in the presence of lN is in line with the

observed increased catalytic competence of RNAP and subtle

changes around the active site in the presence of N proteins

(Cheeran et al., 2007), and it may be mediated by N-connector

interactions.



Figure 6. NusG CTD Interactions and

Impact on r

(A) Binding of the NusG CTD at a NusAS1/NusE

pocket.

(B) Details of the NusAS1-NusGCTD-NusE interac-

tion. Interacting residues are shown as sticks.

(C) Transcription assays monitoring termination in

the ltR1a,b,c region at 3-min time points by the

transcription complexes indicated at the bottom in

the absence or presence of r. The template en-

coded a rut site followed by r-dependent ltR1 and

intrinsic ltR’ terminators. Products are identified on

the right: RO, run-off transcript; tR’, transcript

terminated at ltR’; tR1a,b,c, transcripts terminated in

the ltR1a,b,c region. Samples were analyzed on the

same gel, but lanes were rearranged for display.

r termination was calculated as the fraction of

tR1a,b,c transcripts relative to all transcripts in a lane,

corrected for the respective run lacking r. Quantified

data represent means ± SD of three independent

experiments. Significance is relative to RNAP alone.

(D) The lN-NusA-NusB-NusE-nut RNA complex

modeled according to the positioning of NusA in a

NusA-hisPEC (PDB ID 6FLQ) by superposition of the

NusA subunits.
Intrinsic Disorder Allows lN to Implement a Multi-
pronged Anti-pausing and Anti-termination Strategy
Our results suggest that lN can bestow pause and termination

resistance on the transcriptional apparatus by three main mech-

anisms (Figure 7A). First, lN globally repositions NusA. Thereby,

NusA regions that otherwise stabilize RNA hairpins in the exit

tunnel are displaced; NusA-aCTD interactions that support

hairpin-stimulated pausing and intrinsic termination are broken;

exiting RNA is guided in a manner that might counteract or delay

hairpin formation; access of r to its RNAP binding site might be

obstructed; NusA S1 seems to shield surfaces on the ZBD

important for intrinsic termination; and NusAS1 and NusE are

brought into a position to sequester the NusG CTD from r.

Second, lN locally remodels RNAP elements. The remodeled

FT obstructs binding of RNA hairpins in the RNA exit tunnel next
M

to the ZBD and NusA NTD, as seen in

hisPECs and may sequester RNA-binding

residues of the ZBD involved in hairpin ac-

commodation. The very C terminus of lN

remodels the opposite wall of the RNA

exit tunnel, constricting the tunnel’s inner

diameter, which is expected to compete

with alternative accommodation of regula-

tory hairpins and to counteract swiveling-

associated exit tunnel opening.

Third, lN seems to stabilize RNAP and

nucleic acids to promote processive elon-

gation. Together with the NusG NTD, it

binds upstream DNA, likely favoring DNA

re-annealing and preventing RNAP back-

tracking and swiveling. C-terminal parts of

lN that traverse the hybrid cavity may avert

pause-related conformational changes of
RNAP, stabilize the hybrid, functionally insulate the exit tunnel

from the active site, and possibly enhance the catalytic activity

of RNAP via contacts to the connector.

Thus, lN resembles a molecular ‘‘Swiss army knife’’ with

numerous tools that counteract essentially all modes of pausing

and termination. It will be interesting to see if, e.g., the Q protein

of phage l that installs a NusA-dependent shield against

r-dependent and intrinsic termination (Shankar et al., 2007)

and factors that form a TACduring ribosomal RNA synthesis (Be-

logurov and Artsimovitch, 2015) employ similar mechanisms.

Remarkably, lN can comprehensively reprogram RNAP and

elongation factors, although it is a very small protein (107 resi-

dues). Our results show that, due to its intrinsic disorder (Van

Gilst and von Hippel, 1997), it can adopt a highly elongated

conformation that results in a large exposed interaction surface.
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It can thereby bridge large distances and interact with the

nascent RNA (boxB), upstream DNA, the hybrid, proteins of the

regulatory RNP (NusA, NusE), and various elements of RNAP

(FT, flap base, protrusion, CT clamp, and dock) that are remote

from each other in the lN-TAC. Moreover, lack of a stable struc-

ture allows the C terminus to thread through the RNAP catalytic

cavity.

Strategies to Maintain the Elongating Conformation
Pausing of multi-subunit RNAPs seems to be universally asso-

ciated with a tilted 10-bp hybrid, with RNA in the post-translo-

cated state and DNA in the pre-translocated state, that

sequesters the +1 template base, as observed in hisPECs

(Guo et al., 2018; Kang et al., 2018a), a DRB sensitivity-

inducing factor (DSIF)- and negative elongation factor (NELF)-

paused Pol II TEC (Vos et al., 2018b), and an incompletely

backtracked or slipped Pol II TEC (Cheung and Cramer,

2011). The tilted 10-bp hybrid is accommodated by small

conformational changes in the flap, lid, clamp, and dock

(Kang et al., 2018a), which can be further stabilized by tran-

scription factor NusA in bacteria (Guo et al., 2018) or NELF in

eukaryotes (Vos et al., 2018b). lN might favor an elongation-

competent 9-bp hybrid and counteract transcriptional slippage

(1) by contacting or running close to all the above RNAP ele-

ments, restricting their pausing-related movements, and (2)

by capturing RNA immediately upstream of the hybrid. In addi-

tion, by binding the CT clamp, which in turn cradles the switch

2 region (b0 residues 330–349) that is thought to promote hybrid

movement during translocation (Guo et al., 2018), lN might

further stabilize a translocation-competent conformation.

Efficient rewinding of DNA immediately upstream of the hybrid

stabilizes the post-translocated state in bacterial RNAP and eu-

karyotic Pol II (KIreeva et al., 2018). The eukaryotic NusG homo-

log SPT5, a subunit of DSIF, comprises a NusG-like NTD (NGN)

and five NusG CTD-like KOW domains (KOW1–5). As in the

lN-TAC, the SPT5 NGN binds across the active site cleft and

abuts the upstream DNA in paused and activated Poll II TECs

(Vos et al., 2018a; Vos et al., 2018b). Furthermore, KOW1 binds

upstream DNA. In a DSIF/Pol II-Associated Factor 1(PAF1)- and

SPT6-activated Poll II TEC (Vos et al., 2018a), the C-terminal

extension of the PAF1 subunit LEO1 additionally lines upstream

DNA similar to the central a3 helix of lN, albeit along a different

surface (Figure 7B), suggesting similar strategies in supporting

DNA rewinding and stabilization of an active conformation.

Regulation via the RNAP Inner Tunnel System
The lN C-terminal part represents a remarkable example of how

a factor can take advantage of the system of RNAP channels,

tunnels, and cavities for regulation. lN accesses the active site

cavity on one side of the upstream DNA, where only minimal ad-

justments in RNAP elements are required to grant an unob-

structedpath across the hybrid to theRNAexit tunnel (Figure 7C).

While positively charged lN side chains point toward upstream
Figure 7. Model Illustrating lN Action

(A) Summary of suggested mechanisms employed by lN to suppress transcripti

(B) Comparison of upstream DNA binding by lN (left) and LEO1 in a DSIF-PAF1-

(C) Comparison of lN and HK022 Nun (PDB ID 6ALG) entering the active site cle
DNA, the hybrid and exiting RNA, these side chains are grouped

in linear arrays, suggesting that nucleotides can be easily

‘‘handed over’’ from one to the next with the number and types

of interactionsmaintained. Thus, lN seems to form a ‘‘non-stick’’

lateral surface for the nucleic acids, which still allows nucleic acid

movement as required for RNA chain elongation. Recently, the

cryo-EM structure of a HK022 Nun-stalled TEC showed how

the C terminus of Nun can also access the active site cleft along

a different flank of upstream DNA (Kang et al., 2017). Nun’s

C-terminal 23 residues fit snugly between the b0 zipper (b0 resi-
dues 36–61), lid, rudder (b0 residues 308–327), switch 2, up-

stream DNA, and the hybrid (Figure 7C), displacing several

RNAP elements and upstream DNA. Notably, while lN runs

alongside the nucleic acid scaffold, the C terminus of Nun is

wedged in between the nucleic acids, preventing their move-

ment and thus arresting RNAP. The different lN and Nun binding

modes illustrate how opposite effects can be achieved by pro-

teins entering RNAP through neighboring openings.
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deletion and mutation proteins with cleavable

N-terminal GST-tag)

Said et al., 2017 and

this study

N/A

pETM-11-Rho This study N/A

lN88-107 peptide Roderich S€ußmuth, TU

Berlin, Germany

N/A

Deposited Data

E. coli RNAP-NusA-NusG-NusB-NusE-lN This paper PDB: 6GOV

RNAP-NusA-NusG-NusB-NusE-lN cryo-EM maps This paper EMDB: EMD-0043

Original gel images This paper https://doi.org/10.17632/tp4n84ny5g.1

Experimental Models: Organisms/Strains

Escherichia coli N/A N/A

Oligonucleotides

Template DNA, DNAIIb (tDNA): CTTGTTATCCGCTCA

CAATGCCACACGCCTAACGAGCCGGAAGCATAAA

GTGTAAAGCCTTTTTT

Said et al., 2017 N/A

Non-template DNA, DNAI (ntDNA): AAAAAAGGCTTT

ACACTTTATGCTTCCGGCTCGTATAATCGCACCTTA

TGTGAGCGGATAACAAG

Said et al., 2017 N/A

nut RNA: GGCGCUCUUUAACAUUAAGCCCUGAAG

AAGGGCAAAAAUCAAAUUAAACCACACCUGGCG

UGUGGC

Said et al., 2017 N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pNS-31- DNA template for transcription assay

(includes nut site): AAGCTTTCAGATCTCTCACCTAC

CAAACAATGCCCCCCTGCAAAAAATAAATTCATAT

AAAAAACATACAGATAACCATCTGCGGTGATAAAT

TATCTCTGGCGGTGTTGACATAAATACCACTGGC

GGTGATACTGAGCACATCAGCAGGACGCACTGA

CCACCATGAAGGTGACGCTCTTAAAAATTAAGCC

CTGAAGAAGGGCAGCATTCAAAGCAGAAGGCTT

TGGGGTGTGTGATACGAAACGAAGCATTGGCCG

TAAGTGCGATTCCGGATTAGCTGCCAATTCTAGC

ATGCCTGCAGGTCGACTCTAGATCAGATCTCTCA

CCTACCAAACAAGGGAAAATCGATTCCTCTTATC

TAGCGCGGGGGGTTTTCAATCCCGAAACAGTTC

GCAGGTAATAGTTAGAGCCTGCATAACGGTTTC

GGGATTTTTTCGCGGCATAACATGCAGTGGACGC

CAGAAAATTAAGGGAAAATCGATTCCTCTTATCTAG

ggtaccgagctcgaattcgtaatcatggtcatagctgtttcctgtgtga

aattgttatccgctcacaatt ccacacaacatacgagccggaagca

taaagtgtaaagcctggggtgcctaatgagtgagctaactcacatta

attgcgttgcg

Said et al., 2017 N/A

pNS-33 - DNA template for transcription assay (includes

shortened distance between nut side and tR’):

AAGCTTTCAGATCTCTCACCTACCAAACAATGCCCC

CCTGCAAAAAATAAATTCATATAAAAAACATACAGA

TAACCATCTGCGGTGATAAATTATCTCTGGCGGTGT

TGACATAAATACCACTGGCGGTGATACTGAGCACATC

AGCAGGACGCACTGACCACCATGAAGGTGACGCTC

TTAAAAATTAAGCCCTGAAGAAGGGCAGCTCTAGATC

AGATCTCTCACCTACCAAACAAGGGAAAATCGATTCC

TCTTATCTAGCGCGGGGGGTTTTCAATCCCGAAACAG

TTCGCAGGTAATAGTTAGAGCCTGCATAACGGTTTCG

GGATTTTTTCGCGGCATAACATGCAGTGGACGCCAGA

AAATTAAGGGAAAATCGATTCCTCTTATCTAGggtaccga

gctcgaattcgtaatcatggt catagctgtttcctgtgtgaaattgttatccgc

tcacaattccacacaacatacgagccggaagcataaagtgtaaagcctgg

ggtgcctaatgagtgagctaactcacattaattgcgttgcg

This study N/A

pNS-34 - DNA template for transcription assay with Rho-

dependent terminator (includes nut and rut side): AAGCTA

ATTATAATTATAATTATAATTATAATTATCTCTGGCGGTGTT

GACTTAAAGTCTAACCTATAGTATAATTACAGCCATCGAGAG

GGACACGGGGAAACACCACCAATAACCCCGCTCTTACACA

TTCCAGCCCTGAAAAAGGGCATCAAATTAAACCACACCTAT

GGTGTATGCATTTATTTGCATACATTCAATCAATTGTTATCTA

AGGAAATACTTACATATGGTTCGTGCTCTAGATCAGATCTCT

CACCTACCAAACAAGGGAAAATCGATTCCTCTTATCTAGCG

CGGGGGGTTTTCAATCCCGAAACAGTTCGCAGGTAATAGTT

AGAGCCTGCATAACGGTTTCGGGATTTTTTCGCGGCATAAC

ATGCAGTGGACGCCAGAAAATTAAGGGAAAATCGATTCCTC

TTATCTAGGGTACCGAGCTCGAATTCGTAATCATGGTCATAG

CTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACAC

AACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGC

CTAATGAGTGAGCTAACTCACATTAATTGCGTTGCG

This study N/A

Software and Algorithms

CTFFind4 Rohou and Grigorieff,

2015

https://grigoriefflab.janelia.org/ctffind4

Motioncor2 Zheng et al., 2017 http://msg.ucsf.edu/em/software/

motioncor2.html

EMAN v2.2 Tang et al., 2007 https://blake.bcm.edu/emanwiki/EMAN2

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Relion 1.3 Scheres, 2015 https://www2.mrc-lmb.cam.ac.uk/relion/

index.php?title=Main_Page

SPHIRE Moriya et al., 2017 http://sphire.mpg.de/

SPARX Hohn et al., 2007 http://sparx-em.org/sparxwiki/

COOT v0.8.3 Emsley and Cowtan,

2004

https://www2.mrc-lmb.cam.ac.uk/

personal/pemsley/coot/

PHENIX Afonine et al., 2012 https://www.phenix-online.org
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and request for resources and reagents should be directed to and will be fulfilled by the Lead Contact,

Markus C. Wahl (markus.wahl@fu-berlin.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

For plasmid construction, we used the Escherichia coli (E. coli) DH5a strain (Thermo Fisher Scientific). For recombinant protein

expression we used E. coli Rosetta2 DE3 (Novagen).

METHOD DETAILS

Sample Production
DNA, RNA and protein components of the lN-TAC and variants thereof were produced and purified as described before (Said et al.,

2017). lN and NusA point mutations were introduced by site-directed mutagenesis using the QuikChange protocol (Stratagene). For

N-terminally truncated lN variants (residues 38-107, 58-107), C-terminally truncated lN variants (residues 1-62, 1-84, 1-90, 1-99,

1-104) and a NusA truncation variant containing only the NTD and NTD-S1 linker helix (residues 1-137), the corresponding DNA frag-

ments were PCR-amplified from plasmids encoding the full-length proteins and cloned into pGEX-6P-1 (lN constructs) or pETM-11

(NusA construct) as described (Said et al., 2017). All expression constructs were verified by DNA sequencing (Seqlab). Protein var-

iants were produced and purified using the same protocols as for the wild-type proteins (Said et al., 2017). A synthetic, HPLC-purified

peptide comprising the lN C terminus (lN88-107) was obtained from the group of Roderich S€ußmuth, Technische Universit€at Berlin.

A DNA fragment encoding the NusG NTD (residues 1-116) was amplified from a plasmid containing the full-length NusG coding

region and cloned into pGEX-6P-1. NusGNTD was purified as the wild-type NusG (Said et al., 2017). DNA encoding r was cloned

into pETM-11, removing a vector-contained region coding for an N-terminal His6-tag, and expressed in E. coli Rosetta (DE3) cells

(Novagen). Cells were lysed in 50 mM Tris-HCl, pH 7.5, 50 mM KCl, 1mM DTT, 10% (v/v) glycerol. Cleared lysate was loaded on

a 5 mL Heparin Sepharose column (GE Healthcare) in buffer A (50 mM Tris-HCl, pH 7.5, 50 mM NaCl, 1 mM DTT) and eluted with

buffer A plus 1 M NaCl. Peak fractions were pooled and further purified by gel filtration chromatography in 10 mM Tris-HCl, pH

7.5, 50 mM NaCl, 1 mM DTT.

Cryo-EM Analysis of the lN-TAC
For lN-TAC formation, equimolar amounts of non-template DNA, template DNA and nut RNA were mixed in reaction buffer

(20 mM HEPES-NaOH, pH 7.5, 50 mM NaCl, 5 mM MgCl2, 1 mM DTT) and annealed by heating to 95�C for 5 min and subsequent

cooling to 10�C at 1�C/min to generate an annealed scaffold (Figure 1A). The annealing product was then incubated with RNAP in a

1:0.8 molar ratio on ice for 10 min, then at room temperature for 15 min. Afterward, a 1.2-fold molar excess of NusA/B/E/G and lN

protein was added, followed by incubation at room temperature for 15min. Themixture was subsequently applied to a Superdex 200

Increase 3.2/300 column (GE Healthcare) and fractions of the complex were pooled. Purified complex (0.3 mg/mL) was flash frozen

on Quantifoil R2/4 grids covered with an additional carbon layer, using a Vitrobot plunger (FEI) with 2-4 s blotting time and the blotting

chamber at 4�C and 100% humidity (Said et al., 2017).

Grids were screened for initial data collection using a 120 kV Tecnai G2 Spirit TEM (FEI) equipped with a F416 CMOS camera

(TVIPS). For high-resolution cryo-EM reconstruction, micrographs were acquired on a Titan Krios transmission electron microscope

(FEI), operated at 300 kV, using a GIF energy filter and a K2 direct electron detector (Gatan), operated in super-resolution mode

(European Molecular Biology Laboratory, Heidelberg). Automated data collection was performed using SerialEM (Mastronarde,

2005) and an in-house script (Wim Hagen, European Molecular Biology Laboratory, Heidelberg) for target selection. In total, 4,074

video stacks (40 frames with 20 s total exposure time, dose rate of 3.45 e/A2/s and beam diameter of 800 nm) were acquired at

105.000x magnification resulting in a pixel size of 0.675 Å/pixel at the object scale, using a 50 mm C2 aperture, a 70 mm objective

aperture and a defocus range of 0.75-3.3 mm in a uniform distribution.
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Initial CTF parameters were estimated using CTFFind4 (Rohou and Grigorieff, 2015). Frame alignment, gain correction and dose-

weighting were performed withMotionCorr2 (Zheng et al., 2017), using the following parameters: 5x5 patches, 10 iterations, Fm dose

1.75e/A2/frame, Tol 0.5, frames 1-40. Aligned micrographs and results from CTFFind4 were visually inspected. 3,550 micrographs

were selected for further processing. 802,858 particle imageswere picked using EMAN2 (Tang et al., 2007) with e2boxer.py operated

in ‘‘swarm’’ mode. Box coordinates were scaled up appropriately and used for particle extraction at 6-fold decimation (4.05 Å/pixel)

with Relion 1.3 (Scheres, 2015). 2D classification was performed in 25 iterations using Relion 1.3 with the following parameters:

psi_step 20.0, offset_range 6, offset_step 4, strict_highres_exp 12, oversampling 1, particle diameter 260 Å, tau2_fudge 2, classes

K 100, zero_mask true, dont_check_norm. 708,030 particle images were selected for further refinement by visual inspection of the 2D

class averages (Figure S1B). The particles were re-extracted at 2-fold decimation (1.35 Å/pixel) using SPHIRE (Moriya et al., 2017)

and refined to high-resolution using sxmeridien.py with the following parameters: radius 110 px, initial resolution 15 Å, search range 5

px, translation step 1 px. Two unfiltered half maps were combined and sharpened using a B-factor of �97 A2, yielding resolutions of

3.95 Å and 3.68 Å at the FSC-criteria 0.5 and 0.143, respectively (Figure S2A,B). Local resolution was calculated using sxlocres.py

with a soft mask based on the sharpened map, FSC window size 7 px and a radius 110 px. The resulting mask indicated regions of

different resolution and was used for local filtration via sxfilterlocal.py (Figure S2C).

Analysis of Flexibility in the lN-TAC
Lower resolution of the cryo-EMmap around the bulk of the lN-NusA-NusB-NusE-nut RNA complex indicated a high degree of flex-

ibility of this element relative to RNAP. 3D variability was calculated using a radius of 110 px and 10 images per group (Moriya et al.,

2017). The resulting density map was filtered to define the structurally heterogeneous area. A binary mask was created based on this

variability map and used for focused classification (Penczek et al., 2006). Focused classification only considered information within

the binary mask and was carried out by an incremental K-means-like method of unsupervised 3D sorting (Loerke et al., 2010) imple-

mented using SPARX (Hohn et al., 2007). RNAP alone was added as a neutral reference every 4-6 iterations. 32 iterations separated

the dataset into 7 classes (Tier 1; Figure S3A). Particle images from four classes (409,679 particle images) could be further separated

into 8 classes (Tier 2). The largest classes were refined individually to resolutions of 4.8 Å, 4.2 Å and 4.4 Å, respectively (Maps 2, 3 and

4; Figure S3), representing different states of the modifying RNP. Further refinement of other classes did not result in interpretable

high-resolution maps for the modifying RNP region (Figure S3A).

Model Building and Refinement
The final, globally B-factor sharpened, locally filtered cryo-EMmap was used for model building. Coordinates of an E. coli TEC (PDB

ID 6ALH), of a lN-NusA-NusB-NusE-nut RNA complex (PDB ID 5LM7) and of NusG N- and C-terminal domains (PDB IDs 2K06 and

2JVV) were docked into the cryo-EM map using COOT (Emsley and Cowtan, 2004). Portions connecting the lN-NusA-NusB-NusE-

nut RNA complex and RNAP (NusA NTD, lN central a-helix), the FT, the lN C terminus and the nucleic acids were manually rebuilt

into the cryo-EM density. The entire structure was manually adjusted residue-by-residue, supported by real space refinement in

COOT. The manually built model was refined against the cryo-EM map using the real space refinement protocol in PHENIX

(Afonine et al., 2012). Initial refinement was locally restrained by using partial models as references (RNAP – PDB ID 5LM7; modifying

RNP – PDB ID 6ALH; NusA – PDB ID 5LM9, NusB – PDB ID 3D3B, lN – PDB ID 3D3B, NusGNTD – PDB ID 2K06, NusGCTD – PDB ID

2JVV; (Headd et al., 2012). These restraints were omitted in later refinement steps.

Transcription Assays
Single-round transcription anti-termination assays were performed as described (Said et al., 2017) and analyzed by denaturing

(6 M urea) polyacylamide gel electrophoresis (PAGE; 8%). To test functionality of in vitro assembled lN-TAC, lN-TAC (or a lN-TAC

with lN1-84 or an otherwise identical TEC lacking lN) at 50 nM concention was mixed with 1 mCi [a-32P] ATP in 10 mM Tris-HCl, pH

7.9, 10 mMMgCl2, 100 mM KCl, 1 mM DTT (10 ml final volume), incubated at 32�C for 10 min and then incubated on ice for 5 min. To

start run-off transcription, 1 ml of an ice-cold 1 mM solution of all four NTPs was added to the reaction mix on ice. Reactions were

stopped at selected time points by mixing with 10% SDS. RNAs were PCI-extracted, precipitated by isopropanol and separated

by denaturing PAGE (10%). RNA bands were visualized using a Storm phospohorimager and quantified using Image-Quant software

(GE Healthcare). Data were analyzed by plotting the fraction of run-off transcript versus time and fitting the data to a first-order re-

action (fraction RO = A[1-exp(-ke t)]; RO, run-off transcript; A, amplitude of the reaction; ke, apparent first-order rate constant of tran-

scription elongation; t, time).

To test the effects of some truncated lN variants, assays were performed with a DNA template that contained the same elements

as above but with a shorter distance between the nut site and ltR’ (73 nts compared to 174 nts in the longer version). A TEC was

assembled as described (Said et al., 2017), which was subsequently incubated with 500 nM lN or lN variants at 32�C for 10 min.

RNA chain elongation was started by adding pre-heated NTPs to final concentrations of 2 mM (ATP) or 50 mM (UTP, GTP and

CTP). Reactions were stopped after 15 min, followed by RNA extraction, analysis by denaturing PAGE (8%) and visualization and

quantification as described above. Control experiments were conducted with RNAP alone.

For in vitro transcription assays with r, a DNA template was used, which contained the T7A1 promoter followed by a 158-bp

element derived from a sequence immediately downstream of the cro gene of phage l. The latter segment contains the nut

and rut sites of the ltR1 terminator and the remainder of the terminator region. This sequence is followed by the ltR’ intrinsic
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terminator. r was added to a final concentration of 500 nM hexamer where indicated and assays were performed as described

(Said et al., 2017).

QUANTIFICATION AND STATISTICAL ANALYSIS

At least three independent experiments were performed for each analysis that was statistically analyzed. Significance was assessed

by Student’s unpaired t test; significance indicators: * - p < 0.05; ** - p < 0.01; *** - p < 0.001; ns - not significant (p R 0.05).

DATA AND SOFTWARE AVAILABILITY

Structure coordinates for the lN-TAC were deposited with the Protein Data Bank under accession code 6GOV. Cryo-EM maps

for the lN-TAC were deposited with the Electron Microscopy Data Bank under accession code EMD-0043. Original gel images

are available at: https://doi.org/10.17632/tp4n84ny5g.1
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