597 research outputs found

    Analytical description of spin-Rabi oscillation controlled electronic transitions rates between weakly coupled pairs of paramagnetic states with S=1/2

    Full text link
    We report on an analytical description of spin-dependent electronic transition rates which are controlled by a radiation induced spin-Rabi oscillation of weakly spin-exchange and spin-dipolar coupled paramagnetic states (S=1/2). The oscillation components (the Fourier content) of the net transition rates within spin-pair ensembles are derived for randomly distributed spin resonances with account of a possible correlation between the two distributions that correspond to the two individual pair partners. The results presented here show that when electrically or optically detected Rabi spectroscopy is conducted under an increasing driving field B_ 1, the Rabi spectrum evolves from a single resonance peak at s=\Omega_R, where \Omega_R=\gamma B_1 is the Rabi frequency (\gamma is the gyromagnetic ratio), to three peaks at s= \Omega_R, s=2\Omega_R, and at low s<< \Omega_R. The crossover between the two regimes takes place when \Omega_R exceeds the expectation value \delta_0 of the difference of the Zeeman energies within the pairs, which corresponds to the broadening of the magnetic resonance lines in the presence of disorder caused by hyperfine field or distributions of Lande g-factors. We capture this crossover by analytically calculating the shapes of all three peaks at arbitrary relation between \Omega_R and \delta_0. When the peaks are well-developed their widths are \Delta s ~ \delta_0^2/\Omega_R.Comment: 10 page, 5 figure

    X-ray diffraction studies of the effects of N incorporation in amorphous CNx, materials

    Get PDF
    The effects of nitrogen incorporation on the atomic-scale structure of amorphous CNx samples have been studied for 0, 5, 20, and 30 at. % N concentration, by x-ray diffraction. Significant differences in the structure are observed on the incorporation of only 5 at. % N, and the changes in structure continue as further N is added. From the experimental data, we are able to obtain directly the average bond distances and then calculate the average bond angles for each of the samples. The average first neighbor distance shows a gradual decrease from 1.55 Angstrom for 0 at. % N, to 1.44 Angstrom for 30 at. % N, and a similar trend is observed in the position of the second neighbor peak. This gives a corresponding increase in the average bond angle from 108 degrees to 114 degrees. The results show an increase in the fraction of sp(2) bonded carbon atoms with increasing N concentration, and there is evidence for the presence of significant numbers of C=N and C=N bonds. These results are also consistent with stress, hardness, and optical gap measurements for these samples. (C) 1998 American Institute of Physics. [S0021-8979(98)03907-3]

    Code Reuse in Open Source Software

    Get PDF
    Code reuse is a form of knowledge reuse in software development that is fundamental to innovation in many fields. However, to date there has been no systematic investigation of code reuse in open source software projects. This study uses quantitative and qualitative data gathered from a sample of six open source software projects to explore two sets of research questions derived from the literature on software reuse in firms and open source software development. We find that code reuse is extensive across the sample and that open source software developers, much like developers in firms, apply tools that lower their search costs for knowledge and code, assess the quality of software components, and have incentives to reuse code. Open source software developers reuse code because they want to integrate functionality quickly, because they want to write preferred code, because they operate under limited resources in terms of time and skills, and because they can mitigate development costs through code reuse

    Is post-trabeculectomy hypotony a risk factor for subsequent failure? A case control study

    Get PDF
    BACKGROUND: Ocular hypotony results in an increased break down of the blood-aqueous barrier and an increase in inflammatory mediator release. We postulate that this release may lead to an increased risk of trabeculectomy failure through increased bleb scarring. This study was designed to try to address the question if hypotony within one month of trabeculectomy for Primary Open Angle Glaucoma (POAG), is a risk factor for future failure of the filter. METHODS: We performed a retrospective, case notes review, of patients who underwent trabeculectomy for POAG between Jan 1995 and Jan 1996 at our hospital. We identified those with postoperative hypotony within 1 month of surgery. Hypotony was defined as an intraocular pressure (IOP) < 8 mmHg or an IOP of less than 10 mmHg with choroidal detachment or a shallow anterior chamber. We compared the survival times of the surgery in this group with a control group (who did not suffer hypotony as described above), over a 5 year period. Failure of trabeculectomy was defined as IOP > 21 mmHg, or commencement of topical antihypertensives or repeat surgery. RESULTS: 97 cases matched our inclusion criteria, of these 38 (39%) experienced hypotony within 1 month of surgery. We compared the survival times in those patients who developed hypotony with those who did not using the log-rank test. This data provided evidence of a difference (P = 0.0492) with patients in the hypotony group failing more rapidly than the control group. CONCLUSION: Early post-trabeculectomy hypotony (within 1 month) is associated with reduced survival time of blebs

    Incorporating Hydrologic Data and Ecohydrologic Relationships into Ecological Site Descriptions

    Get PDF
    The purpose of this paper is to recommend a framework and methodology for incorporating hydrologic data and ecohydrologic relationships in Ecological Site Descriptions (ESDs) and thereby enhance the utility of ESDs for assessing rangelands and guiding resilience-based management strategies. Resilience-based strategies assess and manage ecological state dynamics that affect state vulnerability and, therefore, provide opportunities to adapt management. Many rangelands are spatially heterogeneous or sparsely vegetated where the vegetation structure strongly influences infiltration and soil retention. Infiltration and soil retention further influence soil water recharge, nutrient availability, and overall plant productivity. These key ecohydrologic relationships govern the ecologic resilience of the various states and community phases on many rangeland ecological sites (ESs) and are strongly affected by management practices, land use, and disturbances. However, ecohydrologic data and relationships are often missing in ESDs and state-and-transition models (STMs). To address this void, we used literature to determine the data required for inclusion of key ecohydrologic feedbacks into ESDs, developed a framework and methodology for data integration within the current ESD structure, and applied the framework to a select ES for demonstrative purposes. We also evaluated the utility of the Rangeland Hydrology and Erosion Model (RHEM) for assessment and enhancement of ESDs based in part on hydrologic function. We present the framework as a broadly applicable methodology for integrating ecohydrologic relationships and feedbacks into ESDs and resilience-based management strategies. Our proposed framework increases the utility of ESDs to assess rangelands, target conservation and restoration practices, and predict ecosystem responses to management. The integration of RHEM technology and our suggested framework on ecohydrologic relations expands the ecological foundation of the overall ESD concept for rangeland management and is well aligned with resilience-based, adaptive management of US rangelands. The proposed enhancement of ESDs will improve communication between private land owners and resource managers and researchers across multiple disciplines in the field of rangeland management
    corecore