43 research outputs found

    Lactobacilli have a niche in the human nose

    Get PDF
    Although an increasing number of beneficial microbiome members are characterized for the human gut and vagina, beneficial microbes are underexplored for the human upper respiratory tract (URT). In this study, we demonstrate that taxa from the beneficial Lactobacillus genus complex are more prevalent in the healthy URT than in patients with chronic rhinosinusitis (CRS). Several URT-specific isolates are cultured, characterized, and further explored for their genetic and functional properties related to adaptation to the URT. Catalase genes are found in the identified lactobacilli, which is a unique feature within this mostly facultative anaerobic genus. Moreover, one of our isolated strains, Lactobacillus casei AMBR2, contains fimbriae that enable strong adherence to URT epithelium, inhibit the growth and virulence of several URT pathogens, and successfully colonize nasal epithelium of healthy volunteers. This study thus demonstrates that specific lactobacilli are adapted to the URT and could have a beneficial keystone function in this habitat

    Exploring human host–microbiome interactions in health and disease—how to not get lost in translation

    No full text
    Abstract A meeting report on the 7th Wellcome Trust conference on Exploring Human Host–Microbiome Interactions in Health and Disease, held at Hinxton, UK, 5–7 December 2018

    Probiotics against airway allergy: host factors to consider

    No full text
    The worldwide prevalence of allergic diseases has drastically increased in the past decades. Recent studies underline the importance of microbial exposure for the development of a balanced immune system. Consequently, probiotic bacteria are emerging as a safe and natural strategy for allergy prevention and treatment. However, clinical probiotic intervention studies have so far yielded conflicting results. There is increasing awareness about the importance of host-associated factors that determine whether an individual will respond to a specific probiotic treatment, and it is therefore crucial to promote a knowledge-based instead of an empirical selection of promising probiotic strains and their administration regimen.In this Review, we summarize the insights from animal model studies of allergic disease, which reveal how host-related factors - such as genetic makeup, sex, age and microbiological status - can impact the outcomes of preventive or curative probiotic treatment. We explore why and how these factors can influence the results of probiotic studies and negatively impact the reproducibility in animal experiments. These same factors might profoundly influence the outcomes of human clinical trials, and can potentially explain the conflicting results from probiotic intervention studies. Therefore, we also link these host-related factors to human probiotic study outcomes in the context of airway allergies.status: publishe
    corecore