1 research outputs found

    Biochemical characterization of a multi-drug resistant HIV-1 subtype AG reverse transcriptase: antagonism of AZT discrimination and excision pathways and sensitivity to RNase H inhibitors

    Get PDF
    We analyzed a multi-drug resistant (MR) HIV-1 re- verse transcriptase (RT), subcloned from a patient- derived subtype CRF02 AG, harboring 45 amino acid exchanges, amongst them four thymidine analog mutations (TAMs) relevant for high-level AZT (azi- dothymidine) resistance by AZTMP excision (M41L, D67N, T215Y, K219E) as well as four substitutions of the AZTTP discrimination pathway (A62V, V75I, F116Y and Q151M). In addition, K65R, known to an- tagonize AZTMP excision in HIV-1 subtype B was present. Although MR-RT harbored the most signif- icant amino acid exchanges T215Y and Q151M of each pathway, it exclusively used AZTTP discrimi- nation, indicating that the two mechanisms are mu- tually exclusive and that the Q151M pathway is ob- viously preferred since it confers resistance to most nucleoside inhibitors. A derivative was created, ad- ditionally harboring the TAM K70R and the rever- sions M151Q as well as R65K since K65R antago- nizes excision. MR-R65K-K70R-M151Q was compe- tent of AZTMP excision, whereas other combinations thereof with only one or two exchanges still pro- moted discrimination. To tackle the multi-drug resis- tance problem, we tested if the MR-RTs could still be inhibited by RNase H inhibitors. All MR-RTs exhibited similar sensitivity toward RNase H inhibitors be- longing to different inhibitor classes, indicating the importance of developing RNase H inhibitors further as anti-HIV drugs
    corecore