18 research outputs found

    Measurements of SCRF cavity dynamic heat load in horizontal test system

    Full text link
    The Horizontal Test System (HTS) at Fermilab is currently testing fully assembled, dressed superconducting radio frequency (SCRF) cavities. These cavities are cooled in a bath of superfluid helium at 1.8K. Dissipated RF power from the cavities is a dynamic heat load on the cryogenic system. The magnitude of heat flux from these cavities into the helium is also an important variable for understanding cavity performance. Methods and hardware used to measure this dynamic heat load are presented. Results are presented from several cavity tests and testing accuracy is discussed.Comment: 6 pp. Cryogenic Engineering Conference and International Cryogenic Materials Conference 28 Jun - 2 Jul 2009. Tucson, Arizon

    Open channel helium flow during rupture event

    Get PDF

    Warm Compressor system Overview and status of the PIP-II cryogenic system

    Full text link
    The Proton Improvement Plan-II (PIP-II) is a major upgrade to the Fermilab accelerator complex, featuring a new 800-MeV Superconducting Radio-Frequency (SRF) linear accelerator (Linac) powering the accelerator complex to provide the world's most intense high-energy neutrino beam. The PIP-II Linac consists of 23 SRF cryomodules operating at 2 K, 5 K, and 40 K temperature levels supplied by a single helium cryoplant providing 2.5 kW of cooling capacity at 2.0 K. The PIP-II cryogenic system consists of two major systems: a helium cryogenic plant and a cryogenic distribution system. The cryogenic plant includes a refrigerator cold box, a warm compressor system, and helium storage, recovery, and purification systems. The cryogenic distribution system includes a distribution box, intermediate transfer line, and a tunnel transfer line consisting of modular bayonet cans which supply and return cryogens to the cryomodules. A turnaround can is located at the end of the Linac to turnaround cryogenic flows. This paper describes the layout, design, and current status of the PIP-II cryogenic system.Comment: 2023 Cryogenic Engineering Conference and International Cryogenic Materials Conference (CEC/ICMC

    SRF test areas cryogenic system controls graphical user interface

    No full text
    Fermi National Accelerator Laboratory has constructed a superconducting 1.3 GHz cavity test facility at Meson Detector Building (MDB) and a superconducting 1.3 GHz cryomodule test facility located at the New Muon Lab Building (NML). The control of these 2K cryogenic systems is accomplished by using a Synoptic graphical user interface (GUI) to interact with the underlying Fermilab Accelerator Control System. The design, testing and operational experience of employing the Synoptic client-server system for graphical representation will be discussed. Details on the Synoptic deployment to the MDB and NML cryogenic sub-systems will also be discussed. The implementation of the Synoptic as the GUI for both NML and MDB has been a success. Both facilities are currently fulfilling their individual roles in SCRF testing as a result of successful availability of the cryogenic systems. The tools available for creating Synoptic pages will continue to be developed to serve the evolving needs of users
    corecore