1,347 research outputs found

    Orbital Solutions and Absolute Elements of the Eclipsing Binary MY Cygni

    Get PDF
    Differential UBV photoelectric photometry for the eclipsing binary MY Cyg is presented. The Wilson-Devinney program is used to simultaneously solve the three light curves together with previously published radial velocities. A comparison is made with the previous solution found with the Russell-Merrill method. We examine the long-term apsidal motion of this well-detached, slightly eccentric system. We determine absolute dimensions, discuss metallicity/Am-star issues, and estimate the evolutionary status of the stars

    Relationship of Wyoming Big Sagebrush Cover to Herbaceous Vegetation

    Get PDF
    We measured 328 sites in northern, central, and southern Montana and northern Wyoming during 2003 to test the relationship of herbaceous cover to Wyoming big sagebrush (Artemisia tridentata wyomingensis) cover. Long term annual precipitation at all sites was approximately 31 cm. Sagebrush and total herbaceous cover varied from 5 to 45 percent and 3.5 to 55 percent, respectively. Simple linear regression was the best fit model for predicting herbaceous cover from sagebrush cover using the highest Ra2 values as the model selection criteria. In northern Montana, herbaceous vegetation was predicted by sagebrush cover with the following model: Y = 37.4 – 0.61X (Ra2 = 0.16, P \u3c 0.001, n = 87). In central Montana, the model was Y = 14.0 – 0.00X (Ra2 = 0.00, P = 1.0, n = 155). In southern Montana, the model was Y = 35.9 – 0.39X (Ra2 = 0.14, P \u3c 0.001, n = 86). When all sites were combined, the best fit model was Y = 23.7 – 0.15X (Ra2 = 0.01, P \u3c 0.061, n = 328). This analysis determined that only 1 percent of the variation in herbaceous vegetation cover was associated with Wyoming big sagebrush cover. Management suggestions to reduce Wyoming big sagebrush in order to increase herbaceous production for greater sage-grouse (Centrocercus urophasianus) or livestock do not appear to be biologically sound. Keywords: Artemisia tridentata wyomingensis, line intercept, grass cover, Centrocercus urophasianus, forb cover, greater sage-grouse, sage-grouse habitat

    Facial Curvature Detects and Explicates Ethnic Differences in Effects of Prenatal Alcohol Exposure

    Get PDF
    Background Our objective is to help clinicians detect the facial effects of prenatal alcohol exposure by developing computer-based tools for screening facial form. Methods All 415 individuals considered were evaluated by expert dysmorphologists and categorized as (i) healthy control (HC), (ii) fetal alcohol syndrome (FAS), or (iii) heavily prenatally alcohol exposed (HE) but not clinically diagnosable as FAS; 3D facial photographs were used to build models of facial form to support discrimination studies. Surface curvature-based delineations of facial form were introduced. Results (i) Facial growth in FAS, HE, and control subgroups is similar in both cohorts. (ii) Cohort consistency of agreement between clinical diagnosis and HC-FAS facial form classification is lower for midline facial regions and higher for nonmidline regions. (iii) Specific HC-FAS differences within and between the cohorts include: for HC, a smoother philtrum in Cape Coloured individuals; for FAS, a smoother philtrum in Caucasians; for control-FAS philtrum difference, greater homogeneity in Caucasians; for control-FAS face difference, greater homogeneity in Cape Coloured individuals. (iv) Curvature changes in facial profile induced by prenatal alcohol exposure are more homogeneous and greater in Cape Coloureds than in Caucasians. (v) The Caucasian HE subset divides into clusters with control-like and FAS-like facial dysmorphism. The Cape Coloured HE subset is similarly divided for nonmidline facial regions but not clearly for midline structures. (vi) The Cape Coloured HE subset with control-like facial dysmorphism shows orbital hypertelorism. Conclusions Facial curvature assists the recognition of the effects of prenatal alcohol exposure and helps explain why different facial regions result in inconsistent control-FAS discrimination rates in disparate ethnic groups. Heavy prenatal alcohol exposure can give rise to orbital hypertelorism, supporting a long-standing suggestion that prenatal alcohol exposure at a particular time causes increased separation of the brain hemispheres with a concomitant increase in orbital separation

    Disclosure of Maternal HIV Status to Children: To Tell or Not To Tell . . . That Is the Question

    Get PDF
    HIV-infected mothers face the challenging decision of whether to disclose their serostatus to their children. From the perspective of both mother and child, we explored the process of disclosure, providing descriptive information and examining the relationships among disclosure, demographic variables, and child adjustment. Participants were 23 mothers and one of their noninfected children (9 to 16 years of age). Sixty-one percent of mothers disclosed. Consistent with previous research, disclosure was not related to child functioning. However, children sworn to secrecy demonstrated lower social competence and more externalizing problems. Differential disclosure, which occurred in one-third of the families, was associated with higher levels of depressive and anxiety symptoms. Finally, knowing more than mothers had themselves disclosed was related to child maladjustment across multiple domains. Clinical implications and the need for future research are considered

    Orbital Solutions and Absolute Elements of the Massive Algol Binary ET Tauri

    Get PDF
    We acquired differential UBV photoelectric photometry and radial velocities of the relatively bright, understudied, massive Algol binary ET Tau and utilized the Wilson-Devinney (WD) analysis program to obtain a simultaneous solution of these observations. To improve the orbital ephemeris, the V measurements from the ASAS program were also analyzed. Because of the very rapid rotation of the significantly more massive and hotter component (B2/3 spectral class), only radial velocities of the secondary component, which has a ∼B7 spectral class, could be measured. We derive masses of M1=14.34Β±0.28 MβŠ™{M}_{1}=14.34\pm 0.28\,{M}_{\odot } and M2=6.339Β±0.117 MβŠ™{M}_{2}=6.339\pm 0.117\,{M}_{\odot } and equal-volume radii of R1=6.356Β±0.056 RβŠ™{R}_{1}=6.356\pm 0.056\,{R}_{\odot } and R2=11.84Β±0.10 RβŠ™{R}_{2}=11.84\pm 0.10\,{R}_{\odot } for the primary and secondary, respectively. The secondary is filling its Roche lobe, so the system is semi-detached. The effective temperature of the secondary was held fixed at 15,000 K, and the primary\u27s temperature was found to be 30,280Β±109\mathrm{30,280}\pm 109 K. The system, which has a period of 5.996883 Β± 0.000002 days, is assumed to have a circular orbit and is seen at an inclination of 79\buildrel{\circ}\over{.} 55\pm 0\buildrel{\circ}\over{.} 05

    Imaging the Impact of Prenatal Alcohol Exposure on the Structure of the Developing Human Brain

    Get PDF
    Prenatal alcohol exposure has numerous effects on the developing brain, including damage to selective brain structure. We review structural magnetic resonance imaging (MRI) studies of brain abnormalities in subjects prenatally exposed to alcohol. The most common findings include reduced brain volume and malformations of the corpus callosum. Advanced methods have been able to detect shape, thickness and displacement changes throughout multiple brain regions. The teratogenic effects of alcohol appear to be widespread, affecting almost the entire brain. The only region that appears to be relatively spared is the occipital lobe. More recent studies have linked cognition to the underlying brain structure in alcohol-exposed subjects, and several report patterns in the severity of brain damage as it relates to facial dysmorphology or to extent of alcohol exposure. Future studies exploring relationships between brain structure, cognitive measures, dysmorphology, age, and other variables will be valuable for further comprehending the vast effects of prenatal alcohol exposure and for evaluating possible interventions

    Tensor Regression with Applications in Neuroimaging Data Analysis

    Get PDF
    Classical regression methods treat covariates as a vector and estimate a corresponding vector of regression coefficients. Modern applications in medical imaging generate covariates of more complex form such as multidimensional arrays (tensors). Traditional statistical and computational methods are proving insufficient for analysis of these high-throughput data due to their ultrahigh dimensionality as well as complex structure. In this article, we propose a new family of tensor regression models that efficiently exploit the special structure of tensor covariates. Under this framework, ultrahigh dimensionality is reduced to a manageable level, resulting in efficient estimation and prediction. A fast and highly scalable estimation algorithm is proposed for maximum likelihood estimation and its associated asymptotic properties are studied. Effectiveness of the new methods is demonstrated on both synthetic and real MRI imaging data.Comment: 27 pages, 4 figure
    • …
    corecore